Latest AI News & Updates

#artificial intelligence #ai #app #subscriber-only stories #features and investigations

The end of this story includes samples of AI-generated music. Artificial intelligence was barely a term in 1956, when top scientists from the field of computing arrived at Dartmouth College for a summer conference. The computer scientist John McCarthy had coined the phrase in the funding proposal for the event, a gathering to work through…

#artificial intelligence #app #mit technology review explains

MIT Technology Review Explains: Let our writers untangle the complex, messy world of technology to help you understand what’s coming next. You can read more from the series here. When OpenAI cofounder Andrej Karpathy excitedly took to X back in February to post about his new hobby, he probably had no idea he was about…

arXiv:2504.11453v1 Announce Type: cross
Abstract: Progress in offline reinforcement learning (RL) has been impeded by ambiguous problem definitions and entangled algorithmic designs, resulting in inconsistent implementations, insufficient ablations, and unfair evaluations. Although offline RL explicitly avoids environment interaction, prior methods frequently employ extensive, undocumented online evaluation for hyperparameter tuning, complicating method comparisons. Moreover, existing reference implementations differ significantly in boilerplate code, obscuring their core algorithmic contributions. We address these challenges by first introducing a rigorous taxonomy and a transparent evaluation protocol that explicitly quantifies online tuning budgets. To resolve opaque algorithmic design, we provide clean, minimalistic, single-file implementations of various model-free and model-based offline RL methods, significantly enhancing clarity and achieving substantial speed-ups. Leveraging these streamlined implementations, we propose Unifloral, a unified algorithm that encapsulates diverse prior approaches within a single, comprehensive hyperparameter space, enabling algorithm development in a shared hyperparameter space. Using Unifloral with our rigorous evaluation protocol, we develop two novel algorithms - TD3-AWR (model-free) and MoBRAC (model-based) - which substantially outperform established baselines. Our implementation is publicly available at https://github.com/EmptyJackson/unifloral.

arXiv:2504.10584v1 Announce Type: cross
Abstract: High-resolution, near-ground wind-speed data are critical for improving the accuracy of weather predictions and climate models,$^{1-3}$ supporting wildfire control efforts,$^{4-7}$ and ensuring the safe passage of airplanes during takeoff and landing maneouvers.$^{8,9}$ Quantitative wind speed anemometry generally employs on-site instrumentation for accurate single-position data or sophisticated remote techniques such as Doppler radar for quantitative field measurements. It is widely recognized that the wind-induced motion of vegetation depends in a complex manner on their structure and mechanical properties, obviating their use in quantitative anemometry.$^{10-14}$ We analyze measurements on a host of different vegetation showing that leaf motion can be decoupled from the leaf's branch and support structure, at low-to-moderate wind speed, $U_{wind}$. This wind speed range is characterized by a leaf Reynolds number, enabling the development of a remote, quantitative anemometry method based on the formula, $U_{wind}\approx740\sqrt{{\mu}U_{leaf}/{\rho}D}$, that relies only on the leaf size $D$, its measured fluctuating (RMS) speed $U_{leaf}$, the air viscosity $\mu$, and its mass density $\rho$. This formula is corroborated by a first-principles model and validated using a host of laboratory and field tests on diverse vegetation types, ranging from oak, olive, and magnolia trees through to camphor and bullgrass. The findings of this study open the door to a new paradigm in anemometry, using natural vegetation to enable remote and rapid quantitative field measurements at global locations with minimal cost.

arXiv:2410.17758v2 Announce Type: replace-cross
Abstract: Tabular datasets are widely used in scientific disciplines such as biology. While these disciplines have already adopted AI methods to enhance their findings and analysis, they mainly use tree-based methods due to their interpretability. At the same time, artificial neural networks have been shown to offer superior flexibility and depth for rich and complex non-tabular problems, but they are falling behind tree-based models for tabular data in terms of performance and interpretability. Although sparsity has been shown to improve the interpretability and performance of ANN models for complex non-tabular datasets, enforcing sparsity structurally and formatively for tabular data before training the model, remains an open question. To address this question, we establish a method that infuses sparsity in neural networks by utilising attention mechanisms to capture the features' importance in tabular datasets. We show that our models, Sparse TABular NET or sTAB-Net with attention mechanisms, are more effective than tree-based models, reaching the state-of-the-art on biological datasets. They further permit the extraction of insights from these datasets and achieve better performance than post-hoc methods like SHAP.

arXiv:2504.11091v1 Announce Type: cross
Abstract: Antibiotic resistance presents a growing global health crisis, demanding new therapeutic strategies that target novel bacterial mechanisms. Recent advances in protein structure prediction and machine learning-driven molecule generation offer a promising opportunity to accelerate drug discovery. However, practical guidance on selecting and integrating these models into real-world pipelines remains limited. In this study, we develop an end-to-end, artificial intelligence-guided antibiotic discovery pipeline that spans target identification to compound realization. We leverage structure-based clustering across predicted proteomes of multiple pathogens to identify conserved, essential, and non-human-homologous targets. We then systematically evaluate six leading 3D-structure-aware generative models$\unicode{x2014}$spanning diffusion, autoregressive, graph neural network, and language model architectures$\unicode{x2014}$on their usability, chemical validity, and biological relevance. Rigorous post-processing filters and commercial analogue searches reduce over 100 000 generated compounds to a focused, synthesizable set. Our results highlight DeepBlock and TamGen as top performers across diverse criteria, while also revealing critical trade-offs between model complexity, usability, and output quality. This work provides a comparative benchmark and blueprint for deploying artificial intelligence in early-stage antibiotic development.

arXiv:2504.10551v1 Announce Type: cross
Abstract: Empirical Risk Minimization (ERM) models often rely on spurious correlations between features and labels during the learning process, leading to shortcut learning behavior that undermines robustness generalization performance. Current research mainly targets identifying or mitigating a single shortcut; however, in real-world scenarios, cues within the data are diverse and unknown. In empirical studies, we reveal that the models rely to varying extents on different shortcuts. Compared to weak shortcuts, models depend more heavily on strong shortcuts, resulting in their poor generalization ability. To address these challenges, we propose MiMu, a novel method integrated with Transformer-based ERMs designed to Mitigate Multiple shortcut learning behavior, which incorporates self-calibration strategy and self-improvement strategy. In the source model, we preliminarily propose the self-calibration strategy to prevent the model from relying on shortcuts and make overconfident predictions. Then, we further design self-improvement strategy in target model to reduce the reliance on multiple shortcuts. The random mask strategy involves randomly masking partial attention positions to diversify the focus of target model other than concentrating on a fixed region. Meanwhile, the adaptive attention alignment module facilitates the alignment of attention weights to the calibrated source model, without the need for post-hoc attention maps or supervision. Finally, extensive experiments conducted on Natural Language Processing (NLP) and Computer Vision (CV) demonstrate the effectiveness of MiMu in improving robustness generalization abilities.

arXiv:2504.11389v1 Announce Type: cross
Abstract: High resolution panoramic video content is paramount for immersive experiences in Virtual Reality, but is non-trivial to collect as it requires specialized equipment and intricate camera setups. In this work, we introduce VideoPanda, a novel approach for synthesizing 360$^\circ$ videos conditioned on text or single-view video data. VideoPanda leverages multi-view attention layers to augment a video diffusion model, enabling it to generate consistent multi-view videos that can be combined into immersive panoramic content. VideoPanda is trained jointly using two conditions: text-only and single-view video, and supports autoregressive generation of long-videos. To overcome the computational burden of multi-view video generation, we randomly subsample the duration and camera views used during training and show that the model is able to gracefully generalize to generating more frames during inference. Extensive evaluations on both real-world and synthetic video datasets demonstrate that VideoPanda generates more realistic and coherent 360$^\circ$ panoramas across all input conditions compared to existing methods. Visit the project website at https://research-staging.nvidia.com/labs/toronto-ai/VideoPanda/ for results.

arXiv:2504.10512v1 Announce Type: cross
Abstract: Language representation learning has emerged as a promising approach for sequential recommendation, thanks to its ability to learn generalizable representations. However, despite its advantages, this approach still struggles with data sparsity and a limited understanding of common-sense user preferences. To address these limitations, we propose $\textbf{JEPA4Rec}$, a framework that combines $\textbf{J}$oint $\textbf{E}$mbedding $\textbf{P}$redictive $\textbf{A}$rchitecture with language modeling of item textual descriptions. JEPA4Rec captures semantically rich and transferable representations, improving recommendation performance and reducing reliance on large-scale pre-training data. Specifically, JEPA4Rec represents items as text sentences by flattening descriptive information such as $\textit{title, category}$, and other attributes. To encode these sentences, we employ a bidirectional Transformer encoder with modified embedding layers tailored for capturing item information in recommendation datasets. We apply masking to text sentences and use them to predict the representations of the unmasked sentences, helping the model learn generalizable item embeddings. To further improve recommendation performance and language understanding, we employ a two-stage training strategy incorporating self-supervised learning losses. Experiments on six real-world datasets demonstrate that JEPA4Rec consistently outperforms state-of-the-art methods, particularly in cross-domain, cross-platform, and low-resource scenarios.

arXiv:2503.05447v2 Announce Type: replace-cross
Abstract: Linear Sequence Modeling (LSM) like linear attention, state space models and linear RNNs, and Mixture-of-Experts (MoE) have recently emerged as significant architectural improvements. In this paper, we introduce Linear-MoE, a production-level system for modeling and training large-scale models that integrate LSM with MoE. Linear-MoE leverages the advantages of both LSM modules for linear-complexity sequence modeling and MoE layers for sparsely activation, aiming to offer high performance with efficient training. The Linear-MoE system comprises: 1) Modeling subsystem, which provides a unified framework supporting all instances of LSM. and 2) Training subsystem, which facilitates efficient training by incorporating various advanced parallelism technologies, particularly Sequence Parallelism designed for Linear-MoE models. Additionally, we explore hybrid models that combine Linear-MoE layers with standard Transformer-MoE layers with its Sequence Parallelism to further enhance model flexibility and performance. Evaluations on two model series, A0.3B-2B and A1B-7B, demonstrate Linear-MoE achieves efficiency gains while maintaining competitive performance on various benchmarks, showcasing its potential as a next-generation foundational model architecture. Code: https://github.com/OpenSparseLLMs/Linear-MoE.

arXiv:2407.20708v4 Announce Type: replace
Abstract: Brain-inspired Spiking Neural Networks (SNNs) have bio-plausibility and low-power advantages over Artificial Neural Networks (ANNs). Applications of SNNs are currently limited to simple classification tasks because of their poor performance. In this work, we focus on bridging the performance gap between ANNs and SNNs on object detection. Our design revolves around network architecture and spiking neuron. First, the overly complex module design causes spike degradation when the YOLO series is converted to the corresponding spiking version. We design a SpikeYOLO architecture to solve this problem by simplifying the vanilla YOLO and incorporating meta SNN blocks. Second, object detection is more sensitive to quantization errors in the conversion of membrane potentials into binary spikes by spiking neurons. To address this challenge, we design a new spiking neuron that activates Integer values during training while maintaining spike-driven by extending virtual timesteps during inference. The proposed method is validated on both static and neuromorphic object detection datasets. On the static COCO dataset, we obtain 66.2% mAP@50 and 48.9% mAP@50:95, which is +15.0% and +18.7% higher than the prior state-of-the-art SNN, respectively. On the neuromorphic Gen1 dataset, we achieve 67.2% mAP@50, which is +2.5% greater than the ANN with equivalent architecture, and the energy efficiency is improved by 5.7*. Code: https://github.com/BICLab/SpikeYOLO

arXiv:2504.03160v3 Announce Type: replace
Abstract: Large Language Models (LLMs) equipped with web search capabilities have demonstrated impressive potential for deep research tasks. However, current approaches predominantly rely on either manually engineered prompts (prompt engineering-based) with brittle performance or reinforcement learning within controlled Retrieval-Augmented Generation (RAG) environments (RAG-based) that fail to capture the complexities of real-world interaction. In this paper, we introduce DeepResearcher, the first comprehensive framework for end-to-end training of LLM-based deep research agents through scaling reinforcement learning (RL) in real-world environments with authentic web search interactions. Unlike RAG-based approaches that assume all necessary information exists within a fixed corpus, our method trains agents to navigate the noisy, unstructured, and dynamic nature of the open web. We implement a specialized multi-agent architecture where browsing agents extract relevant information from various webpage structures and overcoming significant technical challenges. Extensive experiments on open-domain research tasks demonstrate that DeepResearcher achieves substantial improvements of up to 28.9 points over prompt engineering-based baselines and up to 7.2 points over RAG-based RL agents. Our qualitative analysis reveals emergent cognitive behaviors from end-to-end RL training, including the ability to formulate plans, cross-validate information from multiple sources, engage in self-reflection to redirect research, and maintain honesty when unable to find definitive answers. Our results highlight that end-to-end training in real-world web environments is not merely an implementation detail but a fundamental requirement for developing robust research capabilities aligned with real-world applications. We release DeepResearcher at https://github.com/GAIR-NLP/DeepResearcher.

arXiv:2504.10663v1 Announce Type: cross
Abstract: Wikipedia is powered by MediaWiki, a free and open-source software that is also the infrastructure for many other wiki-based online encyclopedias. These include the recently launched website Ruwiki, which has copied and modified the original Russian Wikipedia content to conform to Russian law. To identify practices and narratives that could be associated with different forms of knowledge manipulation, this article presents an in-depth analysis of this Russian Wikipedia fork. We propose a methodology to characterize the main changes with respect to the original version. The foundation of this study is a comprehensive comparative analysis of more than 1.9M articles from Russian Wikipedia and its fork. Using meta-information and geographical, temporal, categorical, and textual features, we explore the changes made by Ruwiki editors. Furthermore, we present a classification of the main topics of knowledge manipulation in this fork, including a numerical estimation of their scope. This research not only sheds light on significant changes within Ruwiki, but also provides a methodology that could be applied to analyze other Wikipedia forks and similar collaborative projects.

arXiv:2504.10836v1 Announce Type: cross
Abstract: In frequency division duplex (FDD) multiple-input multiple-output (MIMO) wireless communication systems, the acquisition of downlink channel state information (CSI) is essential for maximizing spatial resource utilization and improving system spectral efficiency. The separate design of modules in AI-based CSI feedback architectures under traditional modular communication frameworks, including channel estimation (CE), CSI compression and feedback, leads to sub-optimal performance. In this paper, we propose an uplink assisted joint CE and and CSI feedback approach via deep learning for downlink CSI acquisition, which mitigates performance degradation caused by distribution bias across separately trained modules in traditional modular communication frameworks. The proposed network adopts a deep joint source-channel coding (DJSCC) architecture to mitigate the cliff effect encountered in the conventional separate source-channel coding. Furthermore, we exploit the uplink CSI as auxiliary information to enhance CSI reconstruction accuracy by leveraging the partial reciprocity between the uplink and downlink channels in FDD systems, without introducing additional overhead. The effectiveness of uplink CSI as assisted information and the necessity of an end-toend multi-module joint training architecture is validated through comprehensive ablation and scalability experiments.

arXiv:2504.10612v1 Announce Type: cross
Abstract: Generative models often map noise to data by matching flows or scores, but these approaches become cumbersome for incorporating partial observations or additional priors. Inspired by recent advances in Wasserstein gradient flows, we propose Energy Matching, a framework that unifies flow-based approaches with the flexibility of energy-based models (EBMs). Far from the data manifold, samples move along curl-free, optimal transport paths from noise to data. As they approach the data manifold, an entropic energy term guides the system into a Boltzmann equilibrium distribution, explicitly capturing the underlying likelihood structure of the data. We parameterize this dynamic with a single time-independent scalar field, which serves as both a powerful generator and a flexible prior for effective regularization of inverse problems. Our method substantially outperforms existing EBMs on CIFAR-10 generation (FID 3.97 compared to 8.61), while retaining the simulation-free training of transport-based approaches away from the data manifold. Additionally, we exploit the flexibility of our method and introduce an interaction energy for diverse mode exploration. Our approach focuses on learning a static scalar potential energy -- without time conditioning, auxiliary generators, or additional networks -- marking a significant departure from recent EBM methods. We believe this simplified framework significantly advances EBM capabilities and paves the way for their broader adoption in generative modeling across diverse domains.

arXiv:2412.10575v2 Announce Type: replace-cross
Abstract: Data augmentation methods, especially SoTA interpolation-based methods such as Fair Mixup, have been widely shown to increase model fairness. However, this fairness is evaluated on metrics that do not capture model uncertainty and on datasets with only one, relatively large, minority group. As a remedy, multicalibration has been introduced to measure fairness while accommodating uncertainty and accounting for multiple minority groups. However, existing methods of improving multicalibration involve reducing initial training data to create a holdout set for post-processing, which is not ideal when minority training data is already sparse. This paper uses multicalibration to more rigorously examine data augmentation for classification fairness. We stress-test four versions of Fair Mixup on two structured data classification problems with up to 81 marginalized groups, evaluating multicalibration violations and balanced accuracy. We find that on nearly every experiment, Fair Mixup \textit{worsens} baseline performance and fairness, but the simple vanilla Mixup \textit{outperforms} both Fair Mixup and the baseline, especially when calibrating on small groups. \textit{Combining} vanilla Mixup with multicalibration post-processing, which enforces multicalibration through post-processing on a holdout set, further increases fairness.

arXiv:2504.10839v1 Announce Type: cross
Abstract: The last couple of years have witnessed emerging research that appropriates Theory-of-Mind (ToM) tasks designed for humans to benchmark LLM's ToM capabilities as an indication of LLM's social intelligence. However, this approach has a number of limitations. Drawing on existing psychology and AI literature, we summarize the theoretical, methodological, and evaluation limitations by pointing out that certain issues are inherently present in the original ToM tasks used to evaluate human's ToM, which continues to persist and exacerbated when appropriated to benchmark LLM's ToM. Taking a human-computer interaction (HCI) perspective, these limitations prompt us to rethink the definition and criteria of ToM in ToM benchmarks in a more dynamic, interactional approach that accounts for user preferences, needs, and experiences with LLMs in such evaluations. We conclude by outlining potential opportunities and challenges towards this direction.

arXiv:2504.10873v1 Announce Type: cross
Abstract: In autonomous driving, it is crucial to correctly interpret traffic gestures (TGs), such as those of an authority figure providing orders or instructions, or a pedestrian signaling the driver, to ensure a safe and pleasant traffic environment for all road users. This study investigates the capabilities of state-of-the-art vision-language models (VLMs) in zero-shot interpretation, focusing on their ability to caption and classify human gestures in traffic contexts. We create and publicly share two custom datasets with varying formal and informal TGs, such as 'Stop', 'Reverse', 'Hail', etc. The datasets are "Acted TG (ATG)" and "Instructive TG In-The-Wild (ITGI)". They are annotated with natural language, describing the pedestrian's body position and gesture. We evaluate models using three methods utilizing expert-generated captions as baseline and control: (1) caption similarity, (2) gesture classification, and (3) pose sequence reconstruction similarity. Results show that current VLMs struggle with gesture understanding: sentence similarity averages below 0.59, and classification F1 scores reach only 0.14-0.39, well below the expert baseline of 0.70. While pose reconstruction shows potential, it requires more data and refined metrics to be reliable. Our findings reveal that although some SOTA VLMs can interpret zero-shot human traffic gestures, none are accurate and robust enough to be trustworthy, emphasizing the need for further research in this domain.

arXiv:2504.10751v1 Announce Type: cross
Abstract: In this paper, we develop a systematic framework for the time-sequential compression of dynamic probabilistic occupancy grids. Our approach leverages ideas from signal compression theory to formulate an optimization problem that searches for a multi-resolution hierarchical encoder that balances the quality of the compressed map (distortion) with its description size, the latter of which relates to the bandwidth required to reliably transmit the map to other agents or to store map estimates in on-board memory. The resulting optimization problem allows for multi-resolution map compressions to be obtained that satisfy available communication or memory resources, and does not require knowledge of the occupancy map dynamics. We develop an algorithm to solve our problem, and demonstrate the utility of the proposed framework in simulation on both static (i.e., non-time varying) and dynamic (time-varying) occupancy maps.

arXiv:2407.07612v2 Announce Type: replace-cross
Abstract: For text-based AI systems to interact in the real world, causal reasoning is an essential skill. Since active interventions are costly, we study to what extent a system can learn causal reasoning from symbolic demonstrations of causal axioms. Specifically, we present an axiomatic training method where the system learns from multiple demonstrations of a causal axiom (or rule), rather than incorporating the axiom as an inductive bias or inferring it from data values. A key question is whether the system would learn to generalize from the axiom demonstrations to more complex scenarios. Our results, based on applying axiomatic training to learn the transitivity axiom and d-separation rule, indicate that such generalization is possible. To avoid data contamination issues, we start with a 67 million parameter transformer model and train it from scratch. On both tasks, we find that a model trained on linear causal chains (along with some noisy variations) can generalize well to complex graphs, including longer causal chains, causal chains with reversed order, and graphs with branching.To handle diverse text inputs, the same method is extended to finetune language models. Finetuning Llama-3.1 8B model on our axiomatic data leads to significant gains on causal benchmarks such as Corr2Cause and CLEAR, in some cases providing state-of-the-art performance surpassing GPT-4.

arXiv:2504.10936v1 Announce Type: cross
Abstract: Causal discovery traditionally relies on statistical methods applied to observational data, often requiring large datasets and assumptions about underlying causal structures. Recent advancements in Large Language Models (LLMs) have introduced new possibilities for causal discovery by providing domain expert knowledge. However, it remains unclear whether LLMs can effectively process observational data for causal discovery. In this work, we explore the potential of LLMs for data-driven causal discovery by integrating observational data for LLM-based reasoning. Specifically, we examine whether LLMs can effectively utilize observational data through two prompting strategies: pairwise prompting and breadth first search (BFS)-based prompting. In both approaches, we incorporate the observational data directly into the prompt to assess LLMs' ability to infer causal relationships from such data. Experiments on benchmark datasets show that incorporating observational data enhances causal discovery, boosting F1 scores by up to 0.11 point using both pairwise and BFS LLM-based prompting, while outperforming traditional statistical causal discovery baseline by up to 0.52 points. Our findings highlight the potential and limitations of LLMs for data-driven causal discovery, demonstrating their ability to move beyond textual metadata and effectively interpret and utilize observational data for more informed causal reasoning. Our studies lays the groundwork for future advancements toward fully LLM-driven causal discovery.

arXiv:2504.11171v1 Announce Type: cross
Abstract: We present TerraMind, the first any-to-any generative, multimodal foundation model for Earth observation (EO). Unlike other multimodal models, TerraMind is pretrained on dual-scale representations combining both token-level and pixel-level data across modalities. On a token level, TerraMind encodes high-level contextual information to learn cross-modal relationships, while on a pixel level, TerraMind leverages fine-grained representations to capture critical spatial nuances. We pretrained TerraMind on nine geospatial modalities of a global, large-scale dataset. In this paper, we demonstrate that (i) TerraMind's dual-scale early fusion approach unlocks a range of zero-shot and few-shot applications for Earth observation, (ii) TerraMind introduces "Thinking-in-Modalities" (TiM) -- the capability of generating additional artificial data during finetuning and inference to improve the model output -- and (iii) TerraMind achieves beyond state-of-the-art performance in community-standard benchmarks for EO like PANGAEA. The pretraining dataset, the model weights, and our code is open-sourced under a permissive license.

arXiv:2503.03506v4 Announce Type: replace-cross
Abstract: Synthetic data is emerging as a cost-effective solution necessary to meet the increasing data demands of AI development, created either from existing knowledge or derived from real data. The traditional classification of synthetic data types into hybrid, partial or fully synthetic datasets has limited value and does not reflect the ever-increasing methods to generate synthetic data. The generation method and their source jointly shape the characteristics of synthetic data, which in turn determines its practical applications. We make a case for an alternative approach to grouping synthetic data types that better reflect privacy perspectives in order to facilitate regulatory guidance in the generation and processing of synthetic data. This approach to classification provides flexibility to new advancements like deep generative methods and offers a more practical framework for future applications.

arXiv:1906.05682v1 Announce Type: cross
Abstract: This paper proposes a Residual Convolutional Neural Network (ResNet) based on speech features and trained under Focal Loss to recognize emotion in speech. Speech features such as Spectrogram and Mel-frequency Cepstral Coefficients (MFCCs) have shown the ability to characterize emotion better than just plain text. Further Focal Loss, first used in One-Stage Object Detectors, has shown the ability to focus the training process more towards hard-examples and down-weight the loss assigned to well-classified examples, thus preventing the model from being overwhelmed by easily classifiable examples.

arXiv:2504.10650v1 Announce Type: cross
Abstract: The growing prevalence of conversational voice interfaces, powered by developments in both speech and language technologies, raises important questions about their influence on human communication. While written communication can signal identity through lexical and stylistic choices, voice-based interactions inherently amplify socioindexical elements - such as accent, intonation, and speech style - which more prominently convey social identity and group affiliation. There is evidence that even passive media such as television is likely to influence the audience's linguistic patterns. Unlike passive media, conversational AI is interactive, creating a more immersive and reciprocal dynamic that holds a greater potential to impact how individuals speak in everyday interactions. Such heightened influence can be expected to arise from phenomena such as acoustic-prosodic entrainment and linguistic accommodation, which occur naturally during interaction and enable users to adapt their speech patterns in response to the system. While this phenomenon is still emerging, its potential societal impact could provide organisations, movements, and brands with a subtle yet powerful avenue for shaping and controlling public perception and social identity. We argue that the socioindexical influence of AI-generated speech warrants attention and should become a focus of interdisciplinary research, leveraging new and existing methodologies and technologies to better understand its implications.

arXiv:2412.12144v2 Announce Type: replace-cross
Abstract: Personality assessment, particularly through situational judgment tests (SJTs), is a vital tool for psychological research, talent selection, and educational evaluation. This study explores the potential of GPT-4, a state-of-the-art large language model (LLM), to automate the generation of personality situational judgment tests (PSJTs) in Chinese. Traditional SJT development is labor-intensive and prone to biases, while GPT-4 offers a scalable, efficient alternative. Two studies were conducted: Study 1 evaluated the impact of prompt design and temperature settings on content validity, finding that optimized prompts with a temperature of 1.0 produced creative and accurate items. Study 2 assessed the psychometric properties of GPT-4-generated PSJTs, revealing that they demonstrated satisfactory reliability and validity, surpassing the performance of manually developed tests in measuring the Big Five personality traits. This research highlights GPT-4's effectiveness in developing high-quality PSJTs, providing a scalable and innovative method for psychometric test development. These findings expand the possibilities of automatic item generation and the application of LLMs in psychology, and offer practical implications for streamlining test development processes in resource-limited settings.

arXiv:2504.11431v1 Announce Type: cross
Abstract: Masculine defaults are widely recognized as a significant type of gender bias, but they are often unseen as they are under-researched. Masculine defaults involve three key parts: (i) the cultural context, (ii) the masculine characteristics or behaviors, and (iii) the reward for, or simply acceptance of, those masculine characteristics or behaviors. In this work, we study discourse-based masculine defaults, and propose a twofold framework for (i) the large-scale discovery and analysis of gendered discourse words in spoken content via our Gendered Discourse Correlation Framework (GDCF); and (ii) the measurement of the gender bias associated with these gendered discourse words in LLMs via our Discourse Word-Embedding Association Test (D-WEAT). We focus our study on podcasts, a popular and growing form of social media, analyzing 15,117 podcast episodes. We analyze correlations between gender and discourse words -- discovered via LDA and BERTopic -- to automatically form gendered discourse word lists. We then study the prevalence of these gendered discourse words in domain-specific contexts, and find that gendered discourse-based masculine defaults exist in the domains of business, technology/politics, and video games. Next, we study the representation of these gendered discourse words from a state-of-the-art LLM embedding model from OpenAI, and find that the masculine discourse words have a more stable and robust representation than the feminine discourse words, which may result in better system performance on downstream tasks for men. Hence, men are rewarded for their discourse patterns with better system performance by one of the state-of-the-art language models -- and this embedding disparity is a representational harm and a masculine default.

arXiv:2312.04960v4 Announce Type: replace-cross
Abstract: Vision Transformers (ViTs) have emerged as a fundamental architecture and serve as the backbone of modern vision-language models. Despite their impressive performance, ViTs exhibit notable vulnerability to evasion attacks, necessitating the development of specialized Adversarial Training (AT) strategies tailored to their unique architecture. While a direct solution might involve applying existing AT methods to ViTs, our analysis reveals significant incompatibilities, particularly with state-of-the-art (SOTA) approaches such as Generalist (CVPR 2023) and DBAT (USENIX Security 2024). This paper presents a systematic investigation of adversarial robustness in ViTs and provides a novel theoretical Mutual Information (MI) analysis in its autoencoder-based self-supervised pre-training. Specifically, we show that MI between the adversarial example and its latent representation in ViT-based autoencoders should be constrained via derived MI bounds. Building on this insight, we propose a self-supervised AT method, MIMIR, that employs an MI penalty to facilitate adversarial pre-training by masked image modeling with autoencoders. Extensive experiments on CIFAR-10, Tiny-ImageNet, and ImageNet-1K show that MIMIR can consistently provide improved natural and robust accuracy, where MIMIR outperforms SOTA AT results on ImageNet-1K. Notably, MIMIR demonstrates superior robustness against unforeseen attacks and common corruption data and can also withstand adaptive attacks where the adversary possesses full knowledge of the defense mechanism.

arXiv:2502.01089v2 Announce Type: replace-cross
Abstract: This paper investigates a range of cutting-edge technologies and architectural innovations aimed at simplifying network operations, reducing operational expenditure (OpEx), and enabling the deployment of new service models. The focus is on (i) Proposing novel, more efficient 6G architectures, with both Control and User planes enabling the seamless expansion of services, while addressing long-term 6G network evolution. (ii) Exploring advanced techniques for constrained artificial intelligence (AI) operations, particularly the design of AI agents for real-time learning, optimizing energy consumption, and the allocation of computational resources. (iii) Identifying technologies and architectures that support the orchestration of backend services using serverless computing models across multiple domains, particularly for vertical industries. (iv) Introducing optically-based, ultra-high-speed, low-latency network architectures, with fast optical switching and real-time control, replacing conventional electronic switching to reduce power consumption by an order of magnitude.

arXiv:2501.16371v2 Announce Type: replace-cross
Abstract: Physics-Informed Neural Networks (PINNs) have revolutionized the computation of PDE solutions by integrating partial differential equations (PDEs) into the neural network's training process as soft constraints, becoming an important component of the scientific machine learning (SciML) ecosystem. More recently, physics-informed Kolmogorv-Arnold networks (PIKANs) have also shown to be effective and comparable in accuracy with PINNs. In their current implementation, both PINNs and PIKANs are mainly optimized using first-order methods like Adam, as well as quasi-Newton methods such as BFGS and its low-memory variant, L-BFGS. However, these optimizers often struggle with highly non-linear and non-convex loss landscapes, leading to challenges such as slow convergence, local minima entrapment, and (non)degenerate saddle points. In this study, we investigate the performance of Self-Scaled BFGS (SSBFGS), Self-Scaled Broyden (SSBroyden) methods and other advanced quasi-Newton schemes, including BFGS and L-BFGS with different line search strategies approaches. These methods dynamically rescale updates based on historical gradient information, thus enhancing training efficiency and accuracy. We systematically compare these optimizers -- using both PINNs and PIKANs -- on key challenging linear, stiff, multi-scale and non-linear PDEs, including the Burgers, Allen-Cahn, Kuramoto-Sivashinsky, and Ginzburg-Landau equations. Our findings provide state-of-the-art results with orders-of-magnitude accuracy improvements without the use of adaptive weights or any other enhancements typically employed in PINNs. More broadly, our results reveal insights into the effectiveness of second-order optimization strategies in significantly improving the convergence and accurate generalization of PINNs and PIKANs.

« 1...137138139140141...186»
×