Latest AI News & Updates

#cs.ai #cs.cl

arXiv:2504.12254v1 Announce Type: new
Abstract: Automatic speech recognition (ASR) is crucial for human-machine interaction in diverse applications like conversational agents, industrial robotics, call center automation, and automated subtitling. However, developing high-performance ASR models remains challenging, particularly for low-resource languages like Arabic, due to the scarcity of large, labeled speech datasets, which are costly and labor-intensive to produce. In this work, we employ weakly supervised learning to train an Arabic ASR model using the Conformer architecture. Our model is trained from scratch on 15,000 hours of weakly annotated speech data covering both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), eliminating the need for costly manual transcriptions. Despite the absence of human-verified labels, our approach attains state-of-the-art (SOTA) performance, exceeding all previous efforts in the field of Arabic ASR on the standard benchmarks. By demonstrating the effectiveness of weak supervision as a scalable, cost-efficient alternative to traditional supervised approaches, paving the way for improved ASR systems in low resource settings.

#cs.cv #cs.ai #cs.cl #cs.lg

arXiv:2504.12137v1 Announce Type: cross
Abstract: Despite recent advances in Large Vision Language Models (LVLMs), these models still suffer from generating hallucinatory responses that do not align with the visual input provided. To mitigate such hallucinations, we introduce Efficient Contrastive Decoding (ECD), a simple method that leverages probabilistic hallucination detection to shift the output distribution towards contextually accurate answers at inference time. By contrasting token probabilities and hallucination scores, ECD subtracts hallucinated concepts from the original distribution, effectively suppressing hallucinations. Notably, our proposed method can be applied to any open-source LVLM and does not require additional LVLM training. We evaluate our method on several benchmark datasets and across different LVLMs. Our experiments show that ECD effectively mitigates hallucinations, outperforming state-of-the-art methods with respect to performance on LVLM benchmarks and computation time.

#cs.lg #cs.ai

arXiv:2501.08878v2 Announce Type: replace-cross
Abstract: Continual Learning seeks to develop a model capable of incrementally assimilating new information while retaining prior knowledge. However, current research predominantly addresses a straightforward learning context, wherein all data samples originate from a singular data domain. This paper shifts focus to a more complex and realistic learning environment, characterized by data samples sourced from multiple distinct domains. We tackle this intricate learning challenge by introducing a novel methodology, termed the Multi-Source Dynamic Expansion Model (MSDEM), which leverages various pre-trained models as backbones and progressively establishes new experts based on them to adapt to emerging tasks. Additionally, we propose an innovative dynamic expandable attention mechanism designed to selectively harness knowledge from multiple backbones, thereby accelerating the new task learning. Moreover, we introduce a dynamic graph weight router that strategically reuses all previously acquired parameters and representations for new task learning, maximizing the positive knowledge transfer effect, which further improves generalization performance. We conduct a comprehensive series of experiments, and the empirical findings indicate that our proposed approach achieves state-of-the-art performance.

#cs.cv #cs.ai #cs.cl #cs.lg #cs.mm

arXiv:2403.14773v2 Announce Type: replace-cross
Abstract: Text-to-video diffusion models enable the generation of high-quality videos that follow text instructions, making it easy to create diverse and individual content. However, existing approaches mostly focus on high-quality short video generation (typically 16 or 24 frames), ending up with hard-cuts when naively extended to the case of long video synthesis. To overcome these limitations, we introduce StreamingT2V, an autoregressive approach for long video generation of 80, 240, 600, 1200 or more frames with smooth transitions. The key components are:(i) a short-term memory block called conditional attention module (CAM), which conditions the current generation on the features extracted from the previous chunk via an attentional mechanism, leading to consistent chunk transitions, (ii) a long-term memory block called appearance preservation module, which extracts high-level scene and object features from the first video chunk to prevent the model from forgetting the initial scene, and (iii) a randomized blending approach that enables to apply a video enhancer autoregressively for infinitely long videos without inconsistencies between chunks. Experiments show that StreamingT2V generates high motion amount. In contrast, all competing image-to-video methods are prone to video stagnation when applied naively in an autoregressive manner. Thus, we propose with StreamingT2V a high-quality seamless text-to-long video generator that outperforms competitors with consistency and motion. Our code will be available at: https://github.com/Picsart-AI-Research/StreamingT2V

#cs.ai #cs.cl #cs.ir

arXiv:2504.11459v1 Announce Type: new
Abstract: 1) Introduction and Conceptual Framework: This document explores the concept of information design by dividing it into two major practices: defining the meaning of a corpus of textual data and its visual or multimodal representation. It draws on expertise in enriching textual corpora, particularly audiovisual ones, and transforming them into multiple narrative formats. The text highlights a crucial distinction between the semantic content of a domain and the modalities of its graphic expression, illustrating this approach with concepts rooted in structural semiotics and linguistics traditions.
2) Modeling and Conceptual Design: The article emphasizes the importance of semantic modeling, often achieved through conceptual networks or graphs. These tools enable the structuring of knowledge within a domain by accounting for relationships between concepts, contexts of use, and specific objectives. Stockinger also highlights the constraints and challenges involved in creating dynamic and adaptable models, integrating elements such as thesauri or interoperable ontologies to facilitate the analysis and publication of complex corpora.
3) Applications and Multimodal Visualization: The text concludes by examining the practical application of these models in work environments like OKAPI, developed to analyze, publish, and reuse audiovisual data. It also discusses innovative approaches such as visual storytelling and document reengineering, which involve transforming existing content into new resources tailored to various contexts. These methods emphasize interoperability, flexibility, and the intelligence of communication systems, paving the way for richer and more collaborative use of digital data. The content of this document was presented during the "Semiotics of Information Design" Day organized by Anne Beyaert-Geslin of the University of Bordeaux Montaigne (MICA laboratory) on June 21, 2018, in Bordeaux.

#cs.cv #cs.ai

arXiv:2503.08714v3 Announce Type: replace-cross
Abstract: In filmmaking, directors typically allow actors to perform freely based on the script before providing specific guidance on how to present key actions. AI-generated content faces similar requirements, where users not only need automatic generation of lip synchronization and basic gestures from audio input but also desire semantically accurate and expressive body movement that can be ``directly guided'' through text descriptions. Therefore, we present VersaAnimator, a versatile framework that synthesizes expressive talking human videos from arbitrary portrait images. Specifically, we design a motion generator that produces basic rhythmic movements from audio input and supports text-prompt control for specific actions. The generated whole-body 3D motion tokens can animate portraits of various scales, producing talking heads, half-body gestures and even leg movements for whole-body images. Besides, we introduce a multi-modal controlled video diffusion that generates photorealistic videos, where speech signals govern lip synchronization, facial expressions, and head motions while body movements are guided by the 2D poses. Furthermore, we introduce a token2pose translator to smoothly map 3D motion tokens to 2D pose sequences. This design mitigates the stiffness resulting from direct 3D to 2D conversion and enhances the details of the generated body movements. Extensive experiments shows that VersaAnimator synthesizes lip-synced and identity-preserving videos while generating expressive and semantically meaningful whole-body motions.

#cs.lg #cs.ai

arXiv:2504.10149v2 Announce Type: replace-cross
Abstract: The performance of deep learning models depends heavily on test samples at runtime, and shifts from the training data distribution can significantly reduce accuracy. Test-time adaptation (TTA) addresses this by adapting models during inference without requiring labeled test data or access to the original training set. While research has explored TTA from various perspectives like algorithmic complexity, data and class distribution shifts, model architectures, and offline versus continuous learning, constraints specific to mobile and edge devices remain underexplored. We propose BoTTA, a benchmark designed to evaluate TTA methods under practical constraints on mobile and edge devices. Our evaluation targets four key challenges caused by limited resources and usage conditions: (i) limited test samples, (ii) limited exposure to categories, (iii) diverse distribution shifts, and (iv) overlapping shifts within a sample. We assess state-of-the-art TTA methods under these scenarios using benchmark datasets and report system-level metrics on a real testbed. Furthermore, unlike prior work, we align with on-device requirements by advocating periodic adaptation instead of continuous inference-time adaptation. Experiments reveal key insights: many recent TTA algorithms struggle with small datasets, fail to generalize to unseen categories, and depend on the diversity and complexity of distribution shifts. BoTTA also reports device-specific resource use. For example, while SHOT improves accuracy by $2.25\times$ with $512$ adaptation samples, it uses $1.08\times$ peak memory on Raspberry Pi versus the base model. BoTTA offers actionable guidance for TTA in real-world, resource-constrained deployments.

#cs.ai

arXiv:2504.12031v1 Announce Type: cross
Abstract: This invited paper introduces the concept of "proof-carrying neuro-symbolic code" and explains its meaning and value, from both the "neural" and the "symbolic" perspectives. The talk outlines the first successes and challenges that this new area of research faces.

#cs.cr #cs.ai

arXiv:2504.11774v1 Announce Type: cross
Abstract: With the growing demand for protecting the intellectual property (IP) of text-to-image diffusion models, we propose PCDiff -- a proactive access control framework that redefines model authorization by regulating generation quality. At its core, PCDIFF integrates a trainable fuser module and hierarchical authentication layers into the decoder architecture, ensuring that only users with valid encrypted credentials can generate high-fidelity images. In the absence of valid keys, the system deliberately degrades output quality, effectively preventing unauthorized exploitation.Importantly, while the primary mechanism enforces active access control through architectural intervention, its decoupled design retains compatibility with existing watermarking techniques. This satisfies the need of model owners to actively control model ownership while preserving the traceability capabilities provided by traditional watermarking approaches.Extensive experimental evaluations confirm a strong dependency between credential verification and image quality across various attack scenarios. Moreover, when combined with typical post-processing operations, PCDIFF demonstrates powerful performance alongside conventional watermarking methods. This work shifts the paradigm from passive detection to proactive enforcement of authorization, laying the groundwork for IP management of diffusion models.

#cs.cv #cs.ai

arXiv:2504.11896v1 Announce Type: cross
Abstract: Image decomposition offers deep insights into the imaging factors of visual data and significantly enhances various advanced computer vision tasks. In this work, we introduce a novel approach to low-light image enhancement based on decomposed physics-informed priors. Existing methods that directly map low-light to normal-light images in the sRGB color space suffer from inconsistent color predictions and high sensitivity to spectral power distribution (SPD) variations, resulting in unstable performance under diverse lighting conditions. To address these challenges, we introduce a Physics-informed Color-aware Transform (PiCat), a learning-based framework that converts low-light images from the sRGB color space into deep illumination-invariant descriptors via our proposed Color-aware Transform (CAT). This transformation enables robust handling of complex lighting and SPD variations. Complementing this, we propose the Content-Noise Decomposition Network (CNDN), which refines the descriptor distributions to better align with well-lit conditions by mitigating noise and other distortions, thereby effectively restoring content representations to low-light images. The CAT and the CNDN collectively act as a physical prior, guiding the transformation process from low-light to normal-light domains. Our proposed PiCat framework demonstrates superior performance compared to state-of-the-art methods across five benchmark datasets.

#cs.lg #cs.ai

arXiv:2504.11713v1 Announce Type: cross
Abstract: We introduce Adjoint Sampling, a highly scalable and efficient algorithm for learning diffusion processes that sample from unnormalized densities, or energy functions. It is the first on-policy approach that allows significantly more gradient updates than the number of energy evaluations and model samples, allowing us to scale to much larger problem settings than previously explored by similar methods. Our framework is theoretically grounded in stochastic optimal control and shares the same theoretical guarantees as Adjoint Matching, being able to train without the need for corrective measures that push samples towards the target distribution. We show how to incorporate key symmetries, as well as periodic boundary conditions, for modeling molecules in both cartesian and torsional coordinates. We demonstrate the effectiveness of our approach through extensive experiments on classical energy functions, and further scale up to neural network-based energy models where we perform amortized conformer generation across many molecular systems. To encourage further research in developing highly scalable sampling methods, we plan to open source these challenging benchmarks, where successful methods can directly impact progress in computational chemistry.

#cs.ne #cs.ai

arXiv:2504.11855v1 Announce Type: cross
Abstract: This study introduces EngramNCA, a neural cellular automaton (NCA) that integrates both publicly visible states and private, cell-internal memory channels, drawing inspiration from emerging biological evidence suggesting that memory storage extends beyond synaptic modifications to include intracellular mechanisms. The proposed model comprises two components: GeneCA, an NCA trained to develop distinct morphologies from seed cells containing immutable "gene" encodings, and GenePropCA, an auxiliary NCA that modulates the private "genetic" memory of cells without altering their visible states. This architecture enables the encoding and propagation of complex morphologies through the interaction of visible and private channels, facilitating the growth of diverse structures from a shared "genetic" substrate. EngramNCA supports the emergence of hierarchical and coexisting morphologies, offering insights into decentralized memory storage and transfer in artificial systems. These findings have potential implications for the development of adaptive, self-organizing systems and may contribute to the broader understanding of memory mechanisms in both biological and synthetic contexts.

#cs.cv #cs.ai

arXiv:2504.11477v1 Announce Type: cross
Abstract: Existing computer vision(CV)-based structural damage identification models demonstrate notable accuracy in categorizing and localizing damage. However, these models present several critical limitations that hinder their practical application in civil engineering(CE). Primarily, their ability to recognize damage types remains constrained, preventing comprehensive analysis of the highly varied and complex conditions encountered in real-world CE structures. Second, these models lack linguistic capabilities, rendering them unable to articulate structural damage characteristics through natural language descriptions. With the continuous advancement of artificial intelligence(AI), large multi-modal models(LMMs) have emerged as a transformative solution, enabling the unified encoding and alignment of textual and visual data. These models can autonomously generate detailed descriptive narratives of structural damage while demonstrating robust generalization across diverse scenarios and tasks. This study introduces SDIGLM, an innovative LMM for structural damage identification, developed based on the open-source VisualGLM-6B architecture. To address the challenge of adapting LMMs to the intricate and varied operating conditions in CE, this work integrates a U-Net-based semantic segmentation module to generate defect segmentation maps as visual Chain of Thought(CoT). Additionally, a multi-round dialogue fine-tuning dataset is constructed to enhance logical reasoning, complemented by a language CoT formed through prompt engineering. By leveraging this multi-modal CoT, SDIGLM surpasses general-purpose LMMs in structural damage identification, achieving an accuracy of 95.24% across various infrastructure types. Moreover, the model effectively describes damage characteristics such as hole size, crack direction, and corrosion severity.

#cs.hc #cs.ai

arXiv:2503.04110v2 Announce Type: replace-cross
Abstract: The rise of Large Language Models (LLMs) and generative visual analytics systems has transformed data-driven insights, yet significant challenges persist in accurately interpreting users' analytical and interaction intents. While language inputs offer flexibility, they often lack precision, making the expression of complex intents inefficient, error-prone, and time-intensive. To address these limitations, we investigate the design space of multimodal interactions for generative visual analytics through a literature review and pilot brainstorming sessions. Building on these insights, we introduce a highly extensible workflow that integrates multiple LLM agents for intent inference and visualization generation. We develop InterChat, a generative visual analytics system that combines direct manipulation of visual elements with natural language inputs. This integration enables precise intent communication and supports progressive, visually driven exploratory data analyses. By employing effective prompt engineering, and contextual interaction linking, alongside intuitive visualization and interaction designs, InterChat bridges the gap between user interactions and LLM-driven visualizations, enhancing both interpretability and usability. Extensive evaluations, including two usage scenarios, a user study, and expert feedback, demonstrate the effectiveness of InterChat. Results show significant improvements in the accuracy and efficiency of handling complex visual analytics tasks, highlighting the potential of multimodal interactions to redefine user engagement and analytical depth in generative visual analytics.

#cs.cv #cs.ai

arXiv:2504.11686v1 Announce Type: cross
Abstract: The rapid development of generative AI facilitates content creation and makes image manipulation easier and more difficult to detect. While multimodal Large Language Models (LLMs) have encoded rich world knowledge, they are not inherently tailored for combating AI-generated Content (AIGC) and struggle to comprehend local forgery details. In this work, we investigate the application of multimodal LLMs in forgery detection. We propose a framework capable of evaluating image authenticity, localizing tampered regions, providing evidence, and tracing generation methods based on semantic tampering clues. Our method demonstrates that the potential of LLMs in forgery analysis can be effectively unlocked through meticulous prompt engineering and the application of few-shot learning techniques. We conduct qualitative and quantitative experiments and show that GPT4V can achieve an accuracy of 92.1% in Autosplice and 86.3% in LaMa, which is competitive with state-of-the-art AIGC detection methods. We further discuss the limitations of multimodal LLMs in such tasks and propose potential improvements.

#cs.lg #cs.ai

arXiv:2405.19950v2 Announce Type: replace-cross
Abstract: Learning holistic computational representations in physical, chemical or biological systems requires the ability to process information from different distributions and modalities within the same model. Thus, the demand for multimodal machine learning models has sharply risen for modalities that go beyond vision and language, such as sequences, graphs, time series, or tabular data. While there are many available multimodal fusion and alignment approaches, most of them require end-to-end training, scale quadratically with the number of modalities, cannot handle cases of high modality imbalance in the training set, or are highly topology-specific, making them too restrictive for many biomedical learning tasks. This paper presents Multimodal Lego (MM-Lego), a general-purpose fusion framework to turn any set of encoders into a competitive multimodal model with no or minimal fine-tuning. We achieve this by introducing a wrapper for any unimodal encoder that enforces shape consistency between modality representations. It harmonises these representations by learning features in the frequency domain to enable model merging with little signal interference. We show that MM-Lego 1) can be used as a model merging method which achieves competitive performance with end-to-end fusion models without any fine-tuning, 2) can operate on any unimodal encoder, and 3) is a model fusion method that, with minimal fine-tuning, surpasses all benchmarks in five out of seven datasets.

#cs.cr #cs.ai

arXiv:2504.12143v1 Announce Type: cross
Abstract: The growing and evolving landscape of cybersecurity threats necessitates the development of supporting tools and platforms that allow for the creation of realistic IT environments operating within virtual, controlled settings as Cyber Ranges (CRs). CRs can be exploited for analyzing vulnerabilities and experimenting with the effectiveness of devised countermeasures, as well as serving as training environments for building cyber security skills and abilities for IT operators. This paper proposes ARCeR as an innovative solution for the automatic generation and deployment of CRs, starting from user-provided descriptions in a natural language. ARCeR relies on the Agentic RAG paradigm, which allows it to fully exploit state-of-art AI technologies. Experimental results show that ARCeR is able to successfully process prompts even in cases that LLMs or basic RAG systems are not able to cope with. Furthermore, ARCeR is able to target any CR framework provided that specific knowledge is made available to it.

#cs.lg #cs.ai #cs.cr #cs.ni

arXiv:2501.14700v4 Announce Type: replace-cross
Abstract: As cyber threats grow increasingly sophisticated, reinforcement learning (RL) is emerging as a promising technique to create intelligent and adaptive cyber defense systems. However, most existing autonomous defensive agents have overlooked the inherent graph structure of computer networks subject to cyber attacks, potentially missing critical information and constraining their adaptability. To overcome these limitations, we developed a custom version of the Cyber Operations Research Gym (CybORG) environment, encoding network state as a directed graph with realistic low-level features. We employ a Graph Attention Network (GAT) architecture to process node, edge, and global features, and adapt its output to be compatible with policy gradient methods in RL. Our GAT-based approach offers key advantages over flattened alternatives: policies that demonstrate resilience to certain types of unexpected dynamic network topology changes, reasonable generalisation to networks of varying sizes within the same structural distribution, and interpretable defensive actions grounded in tangible network properties. We demonstrate that GAT defensive policies can be trained using our low-level directed graph observations, even when unexpected connections arise during simulation. Evaluations across networks of different sizes, but consistent subnetwork structure, show our policies achieve comparable performance to policies trained specifically for each network configuration. Our study contributes to the development of robust cyber defence systems that can better adapt to real-world network security challenges.

#cs.ai #cs.cv

arXiv:2501.12524v2 Announce Type: replace-cross
Abstract: With the advent of the COVID-19 pandemic, ultrasound imaging has emerged as a promising technique for COVID-19 detection, due to its non-invasive nature, affordability, and portability. In response, researchers have focused on developing AI-based scoring systems to provide real-time diagnostic support. However, the limited size and lack of proper annotation in publicly available ultrasound datasets pose significant challenges for training a robust AI model. This paper proposes MeDiVLAD, a novel pipeline to address the above issue for multi-level lung-ultrasound (LUS) severity scoring. In particular, we leverage self-knowledge distillation to pretrain a vision transformer (ViT) without label and aggregate frame-level features via dual-level VLAD aggregation. We show that with minimal finetuning, MeDiVLAD outperforms conventional fully-supervised methods in both frame- and video-level scoring, while offering classification reasoning with exceptional quality. This superior performance enables key applications such as the automatic identification of critical lung pathology areas and provides a robust solution for broader medical video classification tasks.

#cs.ai

arXiv:2504.11544v1 Announce Type: new
Abstract: Retrieval-augmented generation (RAG) empowers large language models to access external and private corpus, enabling factually consistent responses in specific domains. By exploiting the inherent structure of the corpus, graph-based RAG methods further enrich this process by building a knowledge graph index and leveraging the structural nature of graphs. However, current graph-based RAG approaches seldom prioritize the design of graph structures. Inadequately designed graph not only impede the seamless integration of diverse graph algorithms but also result in workflow inconsistencies and degraded performance. To further unleash the potential of graph for RAG, we propose NodeRAG, a graph-centric framework introducing heterogeneous graph structures that enable the seamless and holistic integration of graph-based methodologies into the RAG workflow. By aligning closely with the capabilities of LLMs, this framework ensures a fully cohesive and efficient end-to-end process. Through extensive experiments, we demonstrate that NodeRAG exhibits performance advantages over previous methods, including GraphRAG and LightRAG, not only in indexing time, query time, and storage efficiency but also in delivering superior question-answering performance on multi-hop benchmarks and open-ended head-to-head evaluations with minimal retrieval tokens. Our GitHub repository could be seen at https://github.com/Terry-Xu-666/NodeRAG.

#cs.cv #cs.ai #cs.lg

arXiv:2504.12292v1 Announce Type: cross
Abstract: Accurate, real-time 3D reconstruction of human heads from monocular images and videos underlies numerous visual applications. As 3D ground truth data is hard to come by at scale, previous methods have sought to learn from abundant 2D videos in a self-supervised manner. Typically, this involves the use of differentiable mesh rendering, which is effective but faces limitations. To improve on this, we propose SHeaP (Self-supervised Head Geometry Predictor Learned via 2D Gaussians). Given a source image, we predict a 3DMM mesh and a set of Gaussians that are rigged to this mesh. We then reanimate this rigged head avatar to match a target frame, and backpropagate photometric losses to both the 3DMM and Gaussian prediction networks. We find that using Gaussians for rendering substantially improves the effectiveness of this self-supervised approach. Training solely on 2D data, our method surpasses existing self-supervised approaches in geometric evaluations on the NoW benchmark for neutral faces and a new benchmark for non-neutral expressions. Our method also produces highly expressive meshes, outperforming state-of-the-art in emotion classification.

#cs.lg #cs.ai

arXiv:2504.03719v2 Announce Type: replace-cross
Abstract: In this paper, we introduce Symmetric Low-Rank Adapters, an optimized variant of LoRA with even fewer weights. This method utilizes Low-Rank Symmetric Weight Matrices to learn downstream tasks more efficiently. Traditional LoRA accumulates fine-tuning weights with the original pre-trained weights via a Singular Value Decomposition (SVD) like approach, i.e., model weights are fine-tuned via updates of the form $BA$ (where $B \in \mathbb{R}^{n\times r}$, $A \in \mathbb{R}^{r\times n}$, and $r$ is the rank of the merged weight matrix). In contrast, our approach, named SymLoRA, represents fine-tuning weights as a Spectral Decomposition, i.e., $Q \, diag(\Lambda)\, Q^T$, where $Q \in \mathbb{R}^{n\times r}$ and $\Lambda \in \mathbb{R}^r$. SymLoRA requires approximately half of the finetuning weights. Here, we show that this approach has negligible losses in downstream efficacy.

#cs.ir #cs.ai #cs.lg

arXiv:2504.12063v1 Announce Type: cross
Abstract: Modern retrieval systems do not rely on a single ranking model to construct their rankings. Instead, they generally take a cascading approach where a sequence of ranking models are applied in multiple re-ranking stages. Thereby, they balance the quality of the top-K ranking with computational costs by limiting the number of documents each model re-ranks. However, the cascading approach is not the only way models can interact to form a retrieval system.
We propose the concept of compound retrieval systems as a broader class of retrieval systems that apply multiple prediction models. This encapsulates cascading models but also allows other types of interactions than top-K re-ranking. In particular, we enable interactions with large language models (LLMs) which can provide relative relevance comparisons. We focus on the optimization of compound retrieval system design which uniquely involves learning where to apply the component models and how to aggregate their predictions into a final ranking. This work shows how our compound approach can combine the classic BM25 retrieval model with state-of-the-art (pairwise) LLM relevance predictions, while optimizing a given ranking metric and efficiency target. Our experimental results show optimized compound retrieval systems provide better trade-offs between effectiveness and efficiency than cascading approaches, even when applied in a self-supervised manner.
With the introduction of compound retrieval systems, we hope to inspire the information retrieval field to more out-of-the-box thinking on how prediction models can interact to form rankings.

#cs.sd #cs.ai #eess.as

arXiv:2501.03181v2 Announce Type: replace-cross
Abstract: Humans can perceive speakers' characteristics (e.g., identity, gender, personality and emotion) by their appearance, which are generally aligned to their voice style. Recently, vision-driven Text-to-speech (TTS) scholars grounded their investigations on real-person faces, thereby restricting effective speech synthesis from applying to vast potential usage scenarios with diverse characters and image styles. To solve this issue, we introduce a novel FaceSpeak approach. It extracts salient identity characteristics and emotional representations from a wide variety of image styles. Meanwhile, it mitigates the extraneous information (e.g., background, clothing, and hair color, etc.), resulting in synthesized speech closely aligned with a character's persona. Furthermore, to overcome the scarcity of multi-modal TTS data, we have devised an innovative dataset, namely Expressive Multi-Modal TTS, which is diligently curated and annotated to facilitate research in this domain. The experimental results demonstrate our proposed FaceSpeak can generate portrait-aligned voice with satisfactory naturalness and quality.

#stat.ml #cs.ai #cs.lg #stat.me

arXiv:2504.11609v1 Announce Type: cross
Abstract: Recent developments in generative artificial intelligence (AI) rely on machine learning techniques such as deep learning and generative modeling to achieve state-of-the-art performance across wide-ranging domains. These methods' surprising performance is due in part to their ability to learn implicit "representations'' of complex, multi-modal data. Unfortunately, deep neural networks are notoriously black boxes that obscure these representations, making them difficult to interpret or analyze. To resolve these difficulties, one approach is to build new interpretable neural network models from the ground up. This is the goal of the emerging field of causal representation learning (CRL) that uses causality as a vector for building flexible, interpretable, and transferable generative AI. CRL can be seen as a culmination of three intrinsically statistical problems: (i) latent variable models such as factor analysis; (ii) causal graphical models with latent variables; and (iii) nonparametric statistics and deep learning. This paper reviews recent progress in CRL from a statistical perspective, focusing on connections to classical models and statistical and causal identifiablity results. This review also highlights key application areas, implementation strategies, and open statistical questions in CRL.

#cs.lg #cs.ai #cs.dc

arXiv:2411.07826v2 Announce Type: replace-cross
Abstract: In recent years, Large Language Models (LLMs) through Transformer structures have dominated many machine learning tasks, especially text processing. However, these models require massive amounts of data for training and induce high resource requirements, particularly in terms of the large number of Floating Point Operations (FLOPs) and the high amounts of memory needed. To fine-tune such a model in a parameter-efficient way, techniques like Adapter or LoRA have been developed. However, we observe that the application of LoRA, when used in federated learning (FL), while still being parameter-efficient, is memory and FLOP inefficient. Based on that observation, we develop a novel layer finetuning scheme that allows devices in cross-device FL to make use of pretrained neural networks (NNs) while adhering to given resource constraints. We show that our presented scheme outperforms the current state of the art when dealing with homogeneous or heterogeneous computation and memory constraints and is on par with LoRA regarding limited communication, thereby achieving significantly higher accuracies in FL training.

#cs.ar #cs.ai #cs.lg

arXiv:2503.16514v3 Announce Type: replace-cross
Abstract: Designing Verilog modules requires meticulous attention to correctness, efficiency, and adherence to design specifications. However, manually writing Verilog code remains a complex and time-consuming task that demands both expert knowledge and iterative refinement. Leveraging recent advancements in large language models (LLMs) and their structured text generation capabilities, we propose VeriMind, an agentic LLM framework for Verilog code generation that significantly automates and optimizes the synthesis process. Unlike traditional LLM-based code generators, VeriMind employs a structured reasoning approach: given a user-provided prompt describing design requirements, the system first formulates a detailed train of thought before the final Verilog code is generated. This multi-step methodology enhances interpretability, accuracy, and adaptability in hardware design. In addition, we introduce a novel evaluation metric-pass@ARC-which combines the conventional pass@k measure with Average Refinement Cycles (ARC) to capture both success rate and the efficiency of iterative refinement. Experimental results on diverse hardware design tasks demonstrated that our approach achieved up to $8.3\%$ improvement on pass@k metric and $8.1\%$ on pass@ARC metric. These findings underscore the transformative potential of agentic LLMs in automated hardware design, RTL development, and digital system synthesis.

#cs.cv #cs.ai #cs.ro

arXiv:2504.11967v1 Announce Type: cross
Abstract: Unmanned Aerial Vehicles (UAVs) are indispensable for infrastructure inspection, surveillance, and related tasks, yet they also introduce critical security challenges. This survey provides a wide-ranging examination of the anti-UAV domain, centering on three core objectives-classification, detection, and tracking-while detailing emerging methodologies such as diffusion-based data synthesis, multi-modal fusion, vision-language modeling, self-supervised learning, and reinforcement learning. We systematically evaluate state-of-the-art solutions across both single-modality and multi-sensor pipelines (spanning RGB, infrared, audio, radar, and RF) and discuss large-scale as well as adversarially oriented benchmarks. Our analysis reveals persistent gaps in real-time performance, stealth detection, and swarm-based scenarios, underscoring pressing needs for robust, adaptive anti-UAV systems. By highlighting open research directions, we aim to foster innovation and guide the development of next-generation defense strategies in an era marked by the extensive use of UAVs.

#cs.cr #cs.ai

arXiv:2410.02644v3 Announce Type: replace-cross
Abstract: Although LLM-based agents, powered by Large Language Models (LLMs), can use external tools and memory mechanisms to solve complex real-world tasks, they may also introduce critical security vulnerabilities. However, the existing literature does not comprehensively evaluate attacks and defenses against LLM-based agents. To address this, we introduce Agent Security Bench (ASB), a comprehensive framework designed to formalize, benchmark, and evaluate the attacks and defenses of LLM-based agents, including 10 scenarios (e.g., e-commerce, autonomous driving, finance), 10 agents targeting the scenarios, over 400 tools, 27 different types of attack/defense methods, and 7 evaluation metrics. Based on ASB, we benchmark 10 prompt injection attacks, a memory poisoning attack, a novel Plan-of-Thought backdoor attack, 4 mixed attacks, and 11 corresponding defenses across 13 LLM backbones. Our benchmark results reveal critical vulnerabilities in different stages of agent operation, including system prompt, user prompt handling, tool usage, and memory retrieval, with the highest average attack success rate of 84.30\%, but limited effectiveness shown in current defenses, unveiling important works to be done in terms of agent security for the community. We also introduce a new metric to evaluate the agents' capability to balance utility and security. Our code can be found at https://github.com/agiresearch/ASB.

#cs.cl #cs.ai

arXiv:2504.11536v1 Announce Type: cross
Abstract: While reasoning models (e.g., DeepSeek R1) trained with reinforcement learning (RL), excel in textual reasoning, they struggle in scenarios requiring structured problem-solving, such as geometric reasoning, concise computation, or complex equation solving-areas where computational tools like code interpreters (CI) demonstrate distinct advantages. To bridge this gap, we propose ReTool, which enhances long-form reasoning with tool-integrated learning, including two key features: (1) dynamic interleaving of real-time code execution within natural language reasoning processes, and (2) an automated RL paradigm that allows policy rollouts with multi-turn real-time code execution and teaches the model in learning when and how to invoke tools based on outcome feedback. ReTool employs a systematic training framework, beginning with synthetic cold-start data generation to produce code-augmented long-form reasoning traces for fine-tuning base models. Subsequent RL training leverages task outcomes as rewards to iteratively refine the model's tool use strategy, enabling autonomous discovery of optimal tool invocation patterns without human priors. Experiments on the challenging MATH Olympiad benchmark AIME demonstrate ReTool's superiority: Our 32B model achieves 67% accuracy with 400 training steps, outperforming text-based RL baseline (40% accuracy, 1080 steps) in efficiency and performance. Remarkably, ReTool-32B attains 72.5% accuracy in extended settings, surpassing OpenAI's o1-preview by 27.9%. Further analysis reveals emergent behaviors such as code self-correction, signaling an ''aha moment'' in which the model autonomously masters adaptive tool use. These findings highlight the promise of outcome-driven tool integration for advancing complex mathematical reasoning and offer new insights into hybrid neuro-symbolic systems.

« 1...3738394041...88»
×