arXiv:2410.19955v2 Announce Type: replace-cross
Abstract: Despite the growing use of Electronic Health Records (EHR) for AI-assisted diagnosis prediction, most data-driven models struggle to incorporate clinically meaningful medical knowledge. They often rely on limited ontologies, lacking structured reasoning capabilities and comprehensive coverage. This raises an important research question: Will medical knowledge improve predictive models to support stepwise clinical reasoning as performed by human doctors? To address this problem, we propose DuaLK, a dual-expertise framework that combines two complementary sources of information. For external knowledge, we construct a Diagnosis Knowledge Graph (KG) that encodes both hierarchical and semantic relations enriched by large language models (LLM). To align with patient data, we further introduce a lab-informed proxy task that guides the model to follow a clinically consistent, stepwise reasoning process based on lab test signals. Experimental results on two public EHR datasets demonstrate that DuaLK consistently outperforms existing baselines across four clinical prediction tasks. These findings highlight the potential of combining structured medical knowledge with individual-level clinical signals to achieve more accurate and interpretable diagnostic predictions. The source code is publicly available on https://github.com/humphreyhuu/DuaLK.
arXiv:2504.11703v1 Announce Type: cross
Abstract: LLM agents are an emerging form of AI systems where large language models (LLMs) serve as the central component, utilizing a diverse set of tools to complete user-assigned tasks. Despite their great potential, LLM agents pose significant security risks. When interacting with the external world, they may encounter malicious commands from attackers, leading to the execution of dangerous actions. A promising way to address this is by enforcing the principle of least privilege: allowing only essential actions for task completion while blocking unnecessary ones. However, achieving this is challenging, as it requires covering diverse agent scenarios while preserving both security and utility.
We introduce Progent, the first privilege control mechanism for LLM agents. At its core is a domain-specific language for flexibly expressing privilege control policies applied during agent execution. These policies provide fine-grained constraints over tool calls, deciding when tool calls are permissible and specifying fallbacks if they are not. This enables agent developers and users to craft suitable policies for their specific use cases and enforce them deterministically to guarantee security. Thanks to its modular design, integrating Progent does not alter agent internals and requires only minimal changes to agent implementation, enhancing its practicality and potential for widespread adoption. To automate policy writing, we leverage LLMs to generate policies based on user queries, which are then updated dynamically for improved security and utility. Our extensive evaluation shows that it enables strong security while preserving high utility across three distinct scenarios or benchmarks: AgentDojo, ASB, and AgentPoison. Furthermore, we perform an in-depth analysis, showcasing the effectiveness of its core components and the resilience of its automated policy generation against adaptive attacks.
arXiv:2504.11501v1 Announce Type: cross
Abstract: This paper presents a proposal for the governance of frontier AI systems through a hybrid public-private system. Private bodies, authorized and overseen by government, provide certifications to developers of frontier AI systems on an opt-in basis. In exchange for opting in, frontier AI firms receive protections from tort liability for customer misuse of their models. Before detailing the proposal, the paper explores more commonly discussed approaches to AI governance, analyzing their strengths and flaws. It also examines the nature of frontier AI governance itself. The paper includes consideration of the political economic, institutional, legal, safety, and other merits and tradeoffs inherent in the governance system it proposes.
arXiv:2412.03104v3 Announce Type: replace
Abstract: Understanding time series is crucial for its application in real-world scenarios. Recently, large language models (LLMs) have been increasingly applied to time series tasks, leveraging their strong language capabilities to enhance various applications. However, research on multimodal LLMs (MLLMs) for time series understanding and reasoning remains limited, primarily due to the scarcity of high-quality datasets that align time series with textual information. This paper introduces ChatTS, a novel MLLM designed for time series analysis. ChatTS treats time series as a modality, similar to how vision MLLMs process images, enabling it to perform both understanding and reasoning with time series. To address the scarcity of training data, we propose an attribute-based method for generating synthetic time series with detailed attribute descriptions. We further introduce Time Series Evol-Instruct, a novel approach that generates diverse time series Q&As, enhancing the model's reasoning capabilities. To the best of our knowledge, ChatTS is the first TS-MLLM that takes multivariate time series as input for understanding and reasoning, which is fine-tuned exclusively on synthetic datasets. We evaluate its performance using benchmark datasets with real-world data, including six alignment tasks and four reasoning tasks. Our results show that ChatTS significantly outperforms existing vision-based MLLMs (e.g., GPT-4o) and text/agent-based LLMs, achieving a 46.0% improvement in alignment tasks and a 25.8% improvement in reasoning tasks. We have open-sourced the source code, model checkpoint and datasets at https://github.com/NetManAIOps/ChatTS.
arXiv:2504.08525v3 Announce Type: replace
Abstract: Large Language Models (LLMs) are increasingly used as autonomous agents for multi-step tasks. However, most existing frameworks fail to maintain a structured understanding of the task state, often relying on linear prompt concatenation or shallow memory buffers. This leads to brittle performance, frequent hallucinations, and poor long-range coherence. In this work, we propose the Task Memory Engine (TME), a lightweight and structured memory module that tracks task execution using a hierarchical Task Memory Tree (TMT). Each node in the tree corresponds to a task step, storing relevant input, output, status, and sub-task relationships. We introduce a prompt synthesis method that dynamically generates LLM prompts based on the active node path, significantly improving execution consistency and contextual grounding. Through case studies and comparative experiments on multi-step agent tasks, we demonstrate that TME leads to better task completion accuracy and more interpretable behavior with minimal implementation overhead. A reference implementation of the core TME components is available at https://github.com/biubiutomato/TME-Agent, including basic examples and structured memory integration. While the current implementation uses a tree-based structure, TME is designed to be graph-aware, supporting reusable substeps, converging task paths, and shared dependencies. This lays the groundwork for future DAG-based memory architectures.
arXiv:2504.12110v1 Announce Type: new
Abstract: Earth Observation (EO) provides critical planetary data for environmental monitoring, disaster management, climate science, and other scientific domains. Here we ask: Are AI systems ready for reliable Earth Observation? We introduce \datasetnamenospace, a benchmark of 140 yes/no questions from NASA Earth Observatory articles across 13 topics and 17 satellite sensors. Using Google Earth Engine API as a tool, LLM agents can only achieve an accuracy of 33% because the code fails to run over 58% of the time. We improve the failure rate for open models by fine-tuning synthetic data, allowing much smaller models (Llama-3.1-8B) to achieve comparable accuracy to much larger ones (e.g., DeepSeek-R1). Taken together, our findings identify significant challenges to be solved before AI agents can automate earth observation, and suggest paths forward. The project page is available at https://iandrover.github.io/UnivEarth.
arXiv:2504.11788v1 Announce Type: cross
Abstract: With recent advancements in large language models, web agents have been greatly improved. However, dealing with complex and dynamic web environments requires more advanced planning and search abilities. Previous studies usually adopt a greedy one-way search strategy, which may struggle to recover from erroneous states. In this work, we enhance web agents with an explicit rollback mechanism, enabling the agent to revert back to a previous state in its navigation trajectory. This mechanism gives the model the flexibility to directly control the search process, leading to an effective and efficient web navigation method. We conduct experiments on two live web navigation benchmarks with zero-shot and fine-tuning settings. The results demonstrate the effectiveness of our proposed approach.
arXiv:2410.21169v4 Announce Type: replace-cross
Abstract: Document parsing is essential for converting unstructured and semi-structured documents such as contracts, academic papers, and invoices into structured, machine-readable data. Document parsing reliable structured data from unstructured inputs, providing huge convenience for numerous applications. Especially with recent achievements in Large Language Models, document parsing plays an indispensable role in both knowledge base construction and training data generation. This survey presents a comprehensive review of the current state of document parsing, covering key methodologies, from modular pipeline systems to end-to-end models driven by large vision-language models. Core components such as layout detection, content extraction (including text, tables, and mathematical expressions), and multi-modal data integration are examined in detail. Additionally, this paper discusses the challenges faced by modular document parsing systems and vision-language models in handling complex layouts, integrating multiple modules, and recognizing high-density text. It outlines future research directions and emphasizes the importance of developing larger and more diverse datasets.
arXiv:2504.11564v1 Announce Type: cross
Abstract: As artificial intelligence (AI) systems rapidly gain autonomy, the need for robust responsible AI frameworks becomes paramount. This paper investigates how organizations perceive and adapt such frameworks amidst the emerging landscape of increasingly sophisticated agentic AI. Employing an interpretive qualitative approach, the study explores the lived experiences of AI professionals. Findings highlight that the inherent complexity of agentic AI systems and their responsible implementation, rooted in the intricate interconnectedness of responsible AI dimensions and the thematic framework (an analytical structure developed from the data), combined with the novelty of agentic AI, contribute to significant challenges in organizational adaptation, characterized by knowledge gaps, a limited emphasis on stakeholder engagement, and a strong focus on control. These factors, by hindering effective adaptation and implementation, ultimately compromise the potential for responsible AI and the realization of ROI.
arXiv:2503.22675v2 Announce Type: replace-cross
Abstract: Sequential Recommendation (SeqRec) aims to predict the next item by capturing sequential patterns from users' historical interactions, playing a crucial role in many real-world recommender systems. However, existing approaches predominantly adopt a direct forward computation paradigm, where the final hidden state of the sequence encoder serves as the user representation. We argue that this inference paradigm, due to its limited computational depth, struggles to model the complex evolving nature of user preferences and lacks a nuanced understanding of long-tail items, leading to suboptimal performance. To address this issue, we propose \textbf{ReaRec}, the first inference-time computing framework for recommender systems, which enhances user representations through implicit multi-step reasoning. Specifically, ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender while incorporating special reasoning position embeddings to decouple the original item encoding space from the multi-step reasoning space. Moreover, we introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL), to further effectively exploit ReaRec's reasoning potential. Extensive experiments on five public real-world datasets and different SeqRec architectures demonstrate the generality and effectiveness of our proposed ReaRec. Remarkably, post-hoc analyses reveal that ReaRec significantly elevates the performance ceiling of multiple sequential recommendation backbones by approximately 30\%-50\%. Thus, we believe this work can open a new and promising avenue for future research in inference-time computing for sequential recommendation.
arXiv:2504.11977v1 Announce Type: new
Abstract: Many existing digital triage systems are questionnaire-based, guiding patients to appropriate care levels based on information (e.g., symptoms, medical history, and urgency) provided by the patients answering questionnaires. Such a system often uses a deterministic model with predefined rules to determine care levels. It faces challenges with incomplete triage interviews since it can only assist patients who finish the process. In this study, we explore the use of machine learning (ML) to predict outcomes of unfinished interviews, aiming to enhance patient care and service quality. Predicting triage outcomes from incomplete data is crucial for patient safety and healthcare efficiency. Our findings show that decision-tree models, particularly LGBMClassifier and CatBoostClassifier, achieve over 80\% accuracy in predicting outcomes from complete interviews while having a linear correlation between the prediction accuracy and interview completeness degree. For example, LGBMClassifier achieves 88,2\% prediction accuracy for interviews with 100\% completeness, 79,6\% accuracy for interviews with 80\% completeness, 58,9\% accuracy for 60\% completeness, and 45,7\% accuracy for 40\% completeness. The TabTransformer model demonstrated exceptional accuracy of over 80\% for all degrees of completeness but required extensive training time, indicating a need for more powerful computational resources. The study highlights the linear correlation between interview completeness and predictive power of the decision-tree models.
arXiv:2409.02920v3 Announce Type: replace-cross
Abstract: In the rapidly advancing field of robotics, dual-arm coordination and complex object manipulation are essential capabilities for developing advanced autonomous systems. However, the scarcity of diverse, high-quality demonstration data and real-world-aligned evaluation benchmarks severely limits such development. To address this, we introduce RoboTwin, a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets and provide a real-world-aligned evaluation platform for dual-arm robotic tasks. Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios. It also introduces a spatial relation-aware code generation framework that combines object annotations with large language models to break down tasks, determine spatial constraints, and generate precise robotic movement code. Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance. We validated our approach using the open-source COBOT Magic Robot platform. Policies pre-trained on RoboTwin-generated data and fine-tuned with limited real-world samples improve the success rate of over 70% for single-arm tasks and over 40% for dual-arm tasks compared to models trained solely on real-world data. This significant improvement demonstrates RoboTwin's potential to enhance the development and evaluation of dual-arm robotic manipulation systems. Project Page: https://robotwin-benchmark.github.io/early-version/.
arXiv:2410.17088v2 Announce Type: replace-cross
Abstract: A vast amount of scholarly work is published daily, yet much of it remains inaccessible to the general public due to dense jargon and complex language. To address this challenge in science communication, we introduce a reinforcement learning framework that fine-tunes a language model to rewrite scholarly abstracts into more comprehensible versions. Guided by a carefully balanced combination of word- and sentence-level accessibility rewards, our language model effectively substitutes technical terms with more accessible alternatives, a task which models supervised fine-tuned or guided by conventional readability measures struggle to accomplish. Our best model adjusts the readability level of scholarly abstracts by approximately six U.S. grade levels -- in other words, from a postgraduate to a high school level. This translates to roughly a 90% relative boost over the supervised fine-tuning baseline, all while maintaining factual accuracy and high-quality language. An in-depth analysis of our approach shows that balanced rewards lead to systematic modifications in the base model, likely contributing to smoother optimization and superior performance. We envision this work as a step toward bridging the gap between scholarly research and the general public, particularly younger readers and those without a college degree.
arXiv:2504.11741v1 Announce Type: new
Abstract: Recent supervised fine-tuning (SFT) approaches have significantly improved language models' performance on mathematical reasoning tasks, even when models are trained at a small scale. However, the specific capabilities enhanced through such fine-tuning remain poorly understood. In this paper, we conduct a detailed analysis of model performance on the AIME24 dataset to understand how reasoning capabilities evolve. We discover a ladder-like structure in problem difficulty, categorize questions into four tiers (Easy, Medium, Hard, and Extremely Hard (Exh)), and identify the specific requirements for advancing between tiers. We find that progression from Easy to Medium tier requires adopting an R1 reasoning style with minimal SFT (500-1K instances), while Hard-level questions suffer from frequent model's errors at each step of the reasoning chain, with accuracy plateauing at around 65% despite logarithmic scaling. Exh-level questions present a fundamentally different challenge; they require unconventional problem-solving skills that current models uniformly struggle with. Additional findings reveal that carefully curated small-scale datasets offer limited advantage-scaling dataset size proves far more effective. Our analysis provides a clearer roadmap for advancing language model capabilities in mathematical reasoning.
arXiv:2503.22328v2 Announce Type: replace-cross
Abstract: Scene flow estimation aims to recover per-point motion from two adjacent LiDAR scans. However, in real-world applications such as autonomous driving, points rarely move independently of others, especially for nearby points belonging to the same object, which often share the same motion. Incorporating this locally rigid motion constraint has been a key challenge in self-supervised scene flow estimation, which is often addressed by post-processing or appending extra regularization. While these approaches are able to improve the rigidity of predicted flows, they lack an architectural inductive bias for local rigidity within the model structure, leading to suboptimal learning efficiency and inferior performance. In contrast, we enforce local rigidity with a lightweight add-on module in neural network design, enabling end-to-end learning. We design a discretized voting space that accommodates all possible translations and then identify the one shared by nearby points by differentiable voting. Additionally, to ensure computational efficiency, we operate on pillars rather than points and learn representative features for voting per pillar. We plug the Voting Module into popular model designs and evaluate its benefit on Argoverse 2 and Waymo datasets. We outperform baseline works with only marginal compute overhead. Code is available at https://github.com/tudelft-iv/VoteFlow.
arXiv:2504.11792v1 Announce Type: new
Abstract: The ability to predict drug overdose risk from a patient's medical records is crucial for timely intervention and prevention. Traditional machine learning models have shown promise in analyzing longitudinal medical records for this task. However, recent advancements in large language models (LLMs) offer an opportunity to enhance prediction performance by leveraging their ability to process long textual data and their inherent prior knowledge across diverse tasks. In this study, we assess the effectiveness of Open AI's GPT-4o LLM in predicting drug overdose events using patients' longitudinal insurance claims records. We evaluate its performance in both fine-tuned and zero-shot settings, comparing them to strong traditional machine learning methods as baselines. Our results show that LLMs not only outperform traditional models in certain settings but can also predict overdose risk in a zero-shot setting without task-specific training. These findings highlight the potential of LLMs in clinical decision support, particularly for drug overdose risk prediction.
arXiv:2504.11470v1 Announce Type: cross
Abstract: Detection Transformer-based methods have achieved significant advancements in general object detection. However, challenges remain in effectively detecting small objects. One key difficulty is that existing encoders struggle to efficiently fuse low-level features. Additionally, the query selection strategies are not effectively tailored for small objects. To address these challenges, this paper proposes an efficient model, Small Object Detection Transformer (SO-DETR). The model comprises three key components: a dual-domain hybrid encoder, an enhanced query selection mechanism, and a knowledge distillation strategy. The dual-domain hybrid encoder integrates spatial and frequency domains to fuse multi-scale features effectively. This approach enhances the representation of high-resolution features while maintaining relatively low computational overhead. The enhanced query selection mechanism optimizes query initialization by dynamically selecting high-scoring anchor boxes using expanded IoU, thereby improving the allocation of query resources. Furthermore, by incorporating a lightweight backbone network and implementing a knowledge distillation strategy, we develop an efficient detector for small objects. Experimental results on the VisDrone-2019-DET and UAVVaste datasets demonstrate that SO-DETR outperforms existing methods with similar computational demands. The project page is available at https://github.com/ValiantDiligent/SO_DETR.
arXiv:2504.12151v1 Announce Type: cross
Abstract: Multimodal Sentiment Analysis (MSA) faces two critical challenges: the lack of interpretability in the decision logic of multimodal fusion and modality imbalance caused by disparities in inter-modal information density. To address these issues, we propose KAN-MCP, a novel framework that integrates the interpretability of Kolmogorov-Arnold Networks (KAN) with the robustness of the Multimodal Clean Pareto (MCPareto) framework. First, KAN leverages its univariate function decomposition to achieve transparent analysis of cross-modal interactions. This structural design allows direct inspection of feature transformations without relying on external interpretation tools, thereby ensuring both high expressiveness and interpretability. Second, the proposed MCPareto enhances robustness by addressing modality imbalance and noise interference. Specifically, we introduce the Dimensionality Reduction and Denoising Modal Information Bottleneck (DRD-MIB) method, which jointly denoises and reduces feature dimensionality. This approach provides KAN with discriminative low-dimensional inputs to reduce the modeling complexity of KAN while preserving critical sentiment-related information. Furthermore, MCPareto dynamically balances gradient contributions across modalities using the purified features output by DRD-MIB, ensuring lossless transmission of auxiliary signals and effectively alleviating modality imbalance. This synergy of interpretability and robustness not only achieves superior performance on benchmark datasets such as CMU-MOSI, CMU-MOSEI, and CH-SIMS v2 but also offers an intuitive visualization interface through KAN's interpretable architecture.
arXiv:2412.16522v2 Announce Type: replace-cross
Abstract: Contrastive learning is a prevalent technique in self-supervised vision representation learning, typically generating positive pairs by applying two data augmentations to the same image. Designing effective data augmentation strategies is crucial for the success of contrastive learning. Inspired by the story of the blind men and the elephant, we introduce JointCrop and JointBlur. These methods generate more challenging positive pairs by leveraging the joint distribution of the two augmentation parameters, thereby enabling contrastive learning to acquire more effective feature representations. To the best of our knowledge, this is the first effort to explicitly incorporate the joint distribution of two data augmentation parameters into contrastive learning. As a plug-and-play framework without additional computational overhead, JointCrop and JointBlur enhance the performance of SimCLR, BYOL, MoCo v1, MoCo v2, MoCo v3, SimSiam, and Dino baselines with notable improvements.
arXiv:2504.12215v1 Announce Type: cross
Abstract: Reliable tumor segmentation in thoracic computed tomography (CT) remains challenging due to boundary ambiguity, class imbalance, and anatomical variability. We propose an uncertainty-guided, coarse-to-fine segmentation framework that combines full-volume tumor localization with refined region-of-interest (ROI) segmentation, enhanced by anatomically aware post-processing. The first-stage model generates a coarse prediction, followed by anatomically informed filtering based on lung overlap, proximity to lung surfaces, and component size. The resulting ROIs are segmented by a second-stage model trained with uncertainty-aware loss functions to improve accuracy and boundary calibration in ambiguous regions. Experiments on private and public datasets demonstrate improvements in Dice and Hausdorff scores, with fewer false positives and enhanced spatial interpretability. These results highlight the value of combining uncertainty modeling and anatomical priors in cascaded segmentation pipelines for robust and clinically meaningful tumor delineation. On the Orlando dataset, our framework improved Swin UNETR Dice from 0.4690 to 0.6447. Reduction in spurious components was strongly correlated with segmentation gains, underscoring the value of anatomically informed post-processing.
arXiv:2504.11469v1 Announce Type: cross
Abstract: Deep learning models have achieved impressive performance in medical image segmentation, yet their black-box nature limits clinical adoption. In vascular applications, trustworthy segmentation should rely on both local image cues and global anatomical structures, such as vessel connectivity or branching. However, the extent to which models leverage such global context remains unclear. We present a novel explainability pipeline for 3D vessel segmentation, combining gradient-based attribution with graph-guided point selection and a blob-based analysis of Saliency maps. Using vascular graphs extracted from ground truth, we define anatomically meaningful points of interest (POIs) and assess the contribution of input voxels via Saliency maps. These are analyzed at both global and local scales using a custom blob detector. Applied to IRCAD and Bullitt datasets, our analysis shows that model decisions are dominated by highly localized attribution blobs centered near POIs. Attribution features show little correlation with vessel-level properties such as thickness, tubularity, or connectivity -- suggesting limited use of global anatomical reasoning. Our results underline the importance of structured explainability tools and highlight the current limitations of segmentation models in capturing global vascular context.
arXiv:2503.24235v2 Announce Type: replace-cross
Abstract: As enthusiasm for scaling computation (data and parameters) in the pretraining era gradually diminished, test-time scaling (TTS), also referred to as ``test-time computing'' has emerged as a prominent research focus. Recent studies demonstrate that TTS can further elicit the problem-solving capabilities of large language models (LLMs), enabling significant breakthroughs not only in specialized reasoning tasks, such as mathematics and coding, but also in general tasks like open-ended Q&A. However, despite the explosion of recent efforts in this area, there remains an urgent need for a comprehensive survey offering a systemic understanding. To fill this gap, we propose a unified, multidimensional framework structured along four core dimensions of TTS research: what to scale, how to scale, where to scale, and how well to scale. Building upon this taxonomy, we conduct an extensive review of methods, application scenarios, and assessment aspects, and present an organized decomposition that highlights the unique functional roles of individual techniques within the broader TTS landscape. From this analysis, we distill the major developmental trajectories of TTS to date and offer hands-on guidelines for practical deployment. Furthermore, we identify several open challenges and offer insights into promising future directions, including further scaling, clarifying the functional essence of techniques, generalizing to more tasks, and more attributions. Our repository is available on https://github.com/testtimescaling/testtimescaling.github.io/
arXiv:2504.12268v1 Announce Type: cross
Abstract: The rapid scaling of large language model (LLM) training and inference has driven their adoption in semiconductor design across academia and industry. While most prior work evaluates LLMs on hardware description language (HDL) tasks, particularly Verilog, designers are increasingly using high-level synthesis (HLS) to build domain-specific accelerators and complex hardware systems. However, benchmarks and tooling to comprehensively evaluate LLMs for HLS design tasks remain scarce.
To address this, we introduce HLS-Eval, the first complete benchmark and evaluation framework for LLM-driven HLS design. HLS-Eval targets two core tasks: (1) generating HLS code from natural language descriptions, and (2) performing HLS-specific code edits to optimize performance and hardware efficiency. The benchmark includes 94 unique designs drawn from standard HLS benchmarks and novel sources. Each case is prepared via a semi-automated flow that produces a natural language description and a paired testbench for C-simulation and synthesis validation, ensuring each task is "LLM-ready."
Beyond the benchmark, HLS-Eval offers a modular Python framework for automated, parallel evaluation of both local and hosted LLMs. It includes a parallel evaluation engine, direct HLS tool integration, and abstractions for to support different LLM interaction paradigms, enabling rapid prototyping of new benchmarks, tasks, and LLM methods.
We demonstrate HLS-Eval through baseline evaluations of open-source LLMs on Vitis HLS, measuring outputs across four key metrics - parseability, compilability, runnability, and synthesizability - reflecting the iterative HLS design cycle. We also report pass@k metrics, establishing clear baselines and reusable infrastructure for the broader LLM-for-hardware community.
All benchmarks, framework code, and results are open-sourced at https://github.com/stefanpie/hls-eval.
arXiv:2504.12082v1 Announce Type: cross
Abstract: Hate speech detection is a crucial area of research in natural language processing, essential for ensuring online community safety. However, detecting implicit hate speech, where harmful intent is conveyed in subtle or indirect ways, remains a major challenge. Unlike explicit hate speech, implicit expressions often depend on context, cultural subtleties, and hidden biases, making them more challenging to identify consistently. Additionally, the interpretation of such speech is influenced by external knowledge and demographic biases, resulting in varied detection results across different language models. Furthermore, Large Language Models often show heightened sensitivity to toxic language and references to vulnerable groups, which can lead to misclassifications. This over-sensitivity results in false positives (incorrectly identifying harmless statements as hateful) and false negatives (failing to detect genuinely harmful content). Addressing these issues requires methods that not only improve detection precision but also reduce model biases and enhance robustness. To address these challenges, we propose a novel method, which utilizes in-context learning without requiring model fine-tuning. By adaptively retrieving demonstrations that focus on similar groups or those with the highest similarity scores, our approach enhances contextual comprehension. Experimental results show that our method outperforms current state-of-the-art techniques. Implementation details and code are available at TBD.
arXiv:2503.11720v3 Announce Type: replace-cross
Abstract: We introduce Rich Preference Optimization (RPO), a novel pipeline that leverages rich feedback signals to improve the curation of preference pairs for fine-tuning text-to-image diffusion models. Traditional methods, like Diffusion-DPO, often rely solely on reward model labeling, which can be opaque, offer limited insights into the rationale behind preferences, and are prone to issues such as reward hacking or overfitting. In contrast, our approach begins with generating detailed critiques of synthesized images to extract reliable and actionable image editing instructions. By implementing these instructions, we create refined images, resulting in synthetic, informative preference pairs that serve as enhanced tuning datasets. We demonstrate the effectiveness of our pipeline and the resulting datasets in fine-tuning state-of-the-art diffusion models.
arXiv:2504.11623v1 Announce Type: cross
Abstract: Time-series anomaly detection, which detects errors and failures in a workflow, is one of the most important topics in real-world applications. The purpose of time-series anomaly detection is to reduce potential damages or losses. However, existing anomaly detection models detect anomalies through the error between the model output and the ground truth (observed) value, which makes them impractical. In this work, we present a \textit{proactive} approach for time-series anomaly detection based on a time-series forecasting model specialized for anomaly detection and a data-driven anomaly detection model. Our proactive approach establishes an anomaly threshold from training data with a data-driven anomaly detection model, and anomalies are subsequently detected by identifying predicted values that exceed the anomaly threshold. In addition, we extensively evaluated the model using four anomaly detection benchmarks and analyzed both predictable and unpredictable anomalies. We attached the source code as supplementary material.
arXiv:2403.15743v2 Announce Type: replace-cross
Abstract: In this paper, we demonstrate that controllers designed by artificial potential fields (APFs) can be derived from reciprocal control barrier function quadratic program (RCBF-QP) safety filters. By integrating APFs within the RCBF-QP framework, we explicitly establish the relationship between these two approaches. Specifically, we first introduce the concepts of tightened control Lyapunov functions (T-CLFs) and tightened reciprocal control barrier functions (T-RCBFs), each of which incorporates a flexible auxiliary function. We then utilize an attractive potential field as a T-CLF to guide the nominal controller design, and a repulsive potential field as a T-RCBF to formulate an RCBF-QP safety filter. With appropriately chosen auxiliary functions, we show that controllers designed by APFs and those derived by RCBF-QP safety filters are equivalent. Based on this insight, we further generalize the APF-based controllers (equivalently, RCBF-QP safety filter-based controllers) to more general scenarios without restricting the choice of auxiliary functions. Finally, we present a collision avoidance example to clearly illustrate the connection and equivalence between the two methods.
arXiv:2410.20182v2 Announce Type: replace-cross
Abstract: The development of large language models and multi-modal models has enabled the appealing idea of generating novel molecules from text descriptions. Generative modeling would shift the paradigm from relying on large-scale chemical screening to find molecules with desired properties to directly generating those molecules. However, multi-modal models combining text and molecules are often trained from scratch, without leveraging existing high-quality pretrained models. Training from scratch consumes more computational resources and prohibits model scaling. In contrast, we propose a lightweight adapter-based strategy named Chemical Language Model Linker (ChemLML). ChemLML blends the two single domain models and obtains conditional molecular generation from text descriptions while still operating in the specialized embedding spaces of the molecular domain. ChemLML can tailor diverse pretrained text models for molecule generation by training relatively few adapter parameters. We find that the choice of molecular representation used within ChemLML, SMILES versus SELFIES, has a strong influence on conditional molecular generation performance. SMILES is often preferable despite not guaranteeing valid molecules. We raise issues in using the entire PubChem dataset of molecules and their associated descriptions for evaluating molecule generation and provide a filtered version of the dataset as a generation test set. To demonstrate how ChemLML could be used in practice, we generate candidate protein inhibitors and use docking to assess their quality and also generate candidate membrane permeable molecules.
arXiv:2411.01639v2 Announce Type: replace-cross
Abstract: Multimodal foundation models offer a promising framework for robotic perception and planning by processing sensory inputs to generate actionable plans. However, addressing uncertainty in both perception (sensory interpretation) and decision-making (plan generation) remains a critical challenge for ensuring task reliability. We present a comprehensive framework to disentangle, quantify, and mitigate these two forms of uncertainty. We first introduce a framework for uncertainty disentanglement, isolating perception uncertainty arising from limitations in visual understanding and decision uncertainty relating to the robustness of generated plans.
To quantify each type of uncertainty, we propose methods tailored to the unique properties of perception and decision-making: we use conformal prediction to calibrate perception uncertainty and introduce Formal-Methods-Driven Prediction (FMDP) to quantify decision uncertainty, leveraging formal verification techniques for theoretical guarantees. Building on this quantification, we implement two targeted intervention mechanisms: an active sensing process that dynamically re-observes high-uncertainty scenes to enhance visual input quality and an automated refinement procedure that fine-tunes the model on high-certainty data, improving its capability to meet task specifications. Empirical validation in real-world and simulated robotic tasks demonstrates that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines. These improvements are attributed to the combined effect of both interventions and highlight the importance of uncertainty disentanglement, which facilitates targeted interventions that enhance the robustness and reliability of autonomous systems. Fine-tuned models, code, and datasets are available at https://uncertainty-in-planning.github.io/.
arXiv:2504.12284v1 Announce Type: cross
Abstract: We tackle the novel problem of predicting 3D hand motion and contact maps (or Interaction Trajectories) given a single RGB view, action text, and a 3D contact point on the object as input. Our approach consists of (1) Interaction Codebook: a VQVAE model to learn a latent codebook of hand poses and contact points, effectively tokenizing interaction trajectories, (2) Interaction Predictor: a transformer-decoder module to predict the interaction trajectory from test time inputs by using an indexer module to retrieve a latent affordance from the learned codebook. To train our model, we develop a data engine that extracts 3D hand poses and contact trajectories from the diverse HoloAssist dataset. We evaluate our model on a benchmark that is 2.5-10X larger than existing works, in terms of diversity of objects and interactions observed, and test for generalization of the model across object categories, action categories, tasks, and scenes. Experimental results show the effectiveness of our approach over transformer & diffusion baselines across all settings.