arXiv:2504.10655v1 Announce Type: cross
Abstract: Geometric machine learning models such as graph neural networks have achieved remarkable success in recent years in chemical and materials science research for applications such as high-throughput virtual screening and atomistic simulations. The success of these models can be attributed to their ability to effectively learn latent representations of atomic structures directly from the training data. Conversely, this also results in high data requirements for these models, hindering their application to problems which are data sparse which are common in this domain. To address this limitation, there is a growing development in the area of pre-trained machine learning models which have learned general, fundamental, geometric relationships in atomistic data, and which can then be fine-tuned to much smaller application-specific datasets. In particular, models which are pre-trained on diverse, large-scale atomistic datasets have shown impressive generalizability and flexibility to downstream applications, and are increasingly referred to as atomistic foundation models. To leverage the untapped potential of these foundation models, we introduce MatterTune, a modular and extensible framework that provides advanced fine-tuning capabilities and seamless integration of atomistic foundation models into downstream materials informatics and simulation workflows, thereby lowering the barriers to adoption and facilitating diverse applications in materials science. In its current state, MatterTune supports a number of state-of-the-art foundation models such as ORB, MatterSim, JMP, and EquformerV2, and hosts a wide range of features including a modular and flexible design, distributed and customizable fine-tuning, broad support for downstream informatics tasks, and more.
arXiv:2504.11200v1 Announce Type: new
Abstract: This chapter investigates the concept of mutual understanding between humans and systems, positing that Neuro-symbolic Artificial Intelligence (NeSy AI) methods can significantly enhance this mutual understanding by leveraging explicit symbolic knowledge representations with data-driven learning models. We start by introducing three critical dimensions to characterize mutual understanding: sharing knowledge, exchanging knowledge, and governing knowledge. Sharing knowledge involves aligning the conceptual models of different agents to enable a shared understanding of the domain of interest. Exchanging knowledge relates to ensuring the effective and accurate communication between agents. Governing knowledge concerns establishing rules and processes to regulate the interaction between agents. Then, we present several different use case scenarios that demonstrate the application of NeSy AI and Knowledge Graphs to aid meaningful exchanges between human, artificial, and robotic agents. These scenarios highlight both the potential and the challenges of combining top-down symbolic reasoning with bottom-up neural learning, guiding the discussion of the coverage provided by current solutions along the dimensions of sharing, exchanging, and governing knowledge. Concurrently, this analysis facilitates the identification of gaps and less developed aspects in mutual understanding to address in future research.
arXiv:2504.11075v1 Announce Type: new
Abstract: Infants often exhibit goal-directed behaviors, such as reaching for a sensory stimulus, even when no external reward criterion is provided. These intrinsically motivated behaviors facilitate spontaneous exploration and learning of the body and environment during early developmental stages. Although computational modeling can offer insight into the mechanisms underlying such behaviors, many existing studies on intrinsic motivation focus primarily on how exploration contributes to acquiring external rewards. In this paper, we propose a novel density model for an agent's own multimodal sensory experiences, called the "self-prior," and investigate whether it can autonomously induce goal-directed behavior. Integrated within an active inference framework based on the free energy principle, the self-prior generates behavioral references purely from an intrinsic process that minimizes mismatches between average past sensory experiences and current observations. This mechanism is also analogous to the acquisition and utilization of a body schema through continuous interaction with the environment. We examine this approach in a simulated environment and confirm that the agent spontaneously reaches toward a tactile stimulus. Our study implements intrinsically motivated behavior shaped by the agent's own sensory experiences, demonstrating the spontaneous emergence of intentional behavior during early development.
arXiv:2504.10496v1 Announce Type: cross
Abstract: Large language models (LLMs) have demonstrated remarkable effectiveness in completing various tasks such as reasoning, translation, and question answering. However the issue of factual incorrect content in LLM-generated responses remains a persistent challenge. In this study, we evaluate both proprietary and open-source LLMs on their ability to respond with relevant research papers and accurate links to articles hosted on the arXiv platform, based on high level prompts. To facilitate this evaluation, we introduce arXivBench, a benchmark specifically designed to assess LLM performance across eight major subject categories on arXiv and five subfields within computer science, one of the most popular categories among them. Our findings reveal a concerning accuracy of LLM-generated responses depending on the subject, with some subjects experiencing significantly lower accuracy than others. Notably, Claude-3.5-Sonnet exhibits a substantial advantage in generating both relevant and accurate responses. And interestingly, most LLMs achieve a much higher accuracy in the Artificial Intelligence sub-field than other sub-fields. This benchmark provides a standardized tool for evaluating the reliability of LLM-generated scientific responses, promoting more dependable use of LLMs in academic and research environments. Our code is open-sourced at https://github.com/arxivBenchLLM/arXivBench and our dataset is available on huggingface at https://huggingface.co/datasets/arXivBenchLLM/arXivBench.
arXiv:2504.10127v2 Announce Type: replace
Abstract: Graphical User Interface (GUI) agents offer cross-platform solutions for automating complex digital tasks, with significant potential to transform productivity workflows. However, their performance is often constrained by the scarcity of high-quality trajectory data. To address this limitation, we propose training Vision Language Models (VLMs) on data-rich, reasoning-intensive tasks during a dedicated mid-training stage, and then examine how incorporating these tasks facilitates generalization to GUI planning scenarios. Specifically, we explore a range of tasks with readily available instruction-tuning data, including GUI perception, multimodal reasoning, and textual reasoning. Through extensive experiments across 11 mid-training tasks, we demonstrate that: (1) Task generalization proves highly effective, yielding substantial improvements across most settings. For instance, multimodal mathematical reasoning enhances performance on AndroidWorld by an absolute 6.3%. Remarkably, text-only mathematical data significantly boosts GUI web agent performance, achieving a 5.6% improvement on WebArena and 5.4% improvement on AndroidWorld, underscoring notable cross-modal generalization from text-based to visual domains; (2) Contrary to prior assumptions, GUI perception data - previously considered closely aligned with GUI agent tasks and widely utilized for training - has a comparatively limited impact on final performance; (3) Building on these insights, we identify the most effective mid-training tasks and curate optimized mixture datasets, resulting in absolute performance gains of 8.0% on WebArena and 12.2% on AndroidWorld. Our work provides valuable insights into cross-domain knowledge transfer for GUI agents and offers a practical approach to addressing data scarcity challenges in this emerging field. The code, data and models will be available at https://github.com/hkust-nlp/GUIMid.
arXiv:2403.17224v2 Announce Type: replace-cross
Abstract: Explanation methods help understand the reasons for a model's prediction. These methods are increasingly involved in model debugging, performance optimization, and gaining insights into the workings of a model. With such critical applications of these methods, it is imperative to measure the uncertainty associated with the explanations generated by these methods. In this paper, we propose a pipeline to ascertain the explanation uncertainty of neural networks by combining uncertainty estimation methods and explanation methods. We use this pipeline to produce explanation distributions for the CIFAR-10, FER+, and California Housing datasets. By computing the coefficient of variation of these distributions, we evaluate the confidence in the explanation and determine that the explanations generated using Guided Backpropagation have low uncertainty associated with them. Additionally, we compute modified pixel insertion/deletion metrics to evaluate the quality of the generated explanations.
arXiv:2504.10529v1 Announce Type: cross
Abstract: Retrieval-augmented generation (RAG) methods can enhance the performance of LLMs by incorporating retrieved knowledge chunks into the generation process. In general, the retrieval and generation steps usually have different requirements for these knowledge chunks. The retrieval step benefits from comprehensive information to improve retrieval accuracy, whereas excessively long chunks may introduce redundant contextual information, thereby diminishing both the effectiveness and efficiency of the generation process. However, existing RAG methods typically employ identical representations of knowledge chunks for both retrieval and generation, resulting in suboptimal performance. In this paper, we propose a heterogeneous RAG framework (\myname) that decouples the representations of knowledge chunks for retrieval and generation, thereby enhancing the LLMs in both effectiveness and efficiency. Specifically, we utilize short chunks to represent knowledge to adapt the generation step and utilize the corresponding chunk with its contextual information from multi-granular views to enhance retrieval accuracy. We further introduce an adaptive prompt tuning method for the retrieval model to adapt the heterogeneous retrieval augmented generation process. Extensive experiments demonstrate that \myname achieves significant improvements compared to baselines.
arXiv:2503.19887v4 Announce Type: replace-cross
Abstract: Recent progress in AI capabilities has heightened concerns that AI systems could pose a threat to national security, for example, by making it easier for malicious actors to perform cyberattacks on critical national infrastructure, or through loss of control of autonomous AI systems. In parallel, federal legislators in the US have proposed nascent 'AI incident regimes' to identify and counter similar threats. In this paper, we consolidate these two trends and present a timely proposal for a legally mandated post-deployment AI incident regime that aims to counter potential national security threats from AI systems. We start the paper by introducing the concept of 'security-critical' to describe doctors that pose extreme risks to national security, before arguing that 'security-critical' describes civilian nuclear power, aviation, life science dual-use research of concern, and frontier AI development. We then present in detail our AI incident regime proposal, justifying each component of the proposal by demonstrating its similarity to US domestic incident regimes in other 'security-critical' sectors. Finally, we sketch a hypothetical scenario where our proposed AI incident regime deals with an AI cyber incident. Our proposed AI incident regime is split into three phases. The first phase revolves around a novel operationalization of what counts as an 'AI incident' and we suggest that AI providers must create a 'national security case' before deploying a frontier AI system. The second and third phases spell out that AI providers should notify a government agency about incidents, and that the government agency should be involved in amending AI providers' security and safety procedures, in order to counter future threats to national security.
arXiv:2503.18172v3 Announce Type: replace-cross
Abstract: Misleading chart visualizations, which intentionally manipulate data representations to support specific claims, can distort perceptions and lead to incorrect conclusions. Despite decades of research, misleading visualizations remain a widespread and pressing issue. Recent advances in multimodal large language models (MLLMs) have demonstrated strong chart comprehension capabilities, yet no existing work has systematically evaluated their ability to detect and interpret misleading charts. This paper introduces the Misleading Chart Question Answering (Misleading ChartQA) Benchmark, a large-scale multimodal dataset designed to assess MLLMs in identifying and reasoning about misleading charts. It contains over 3,000 curated examples, covering 21 types of misleaders and 10 chart types. Each example includes standardized chart code, CSV data, and multiple-choice questions with labeled explanations, validated through multi-round MLLM checks and exhausted expert human review. We benchmark 16 state-of-the-art MLLMs on our dataset, revealing their limitations in identifying visually deceptive practices. We also propose a novel pipeline that detects and localizes misleaders, enhancing MLLMs' accuracy in misleading chart interpretation. Our work establishes a foundation for advancing MLLM-driven misleading chart comprehension. We publicly release the sample dataset to support further research in this critical area.
arXiv:2504.10865v1 Announce Type: new
Abstract: In this paper, we study the theoretical properties of the projected Bellman equation (PBE) and two algorithms to solve this equation: linear Q-learning and approximate value iteration (AVI). We consider two sufficient conditions for the existence of a solution to PBE : strictly negatively row dominating diagonal (SNRDD) assumption and a condition motivated by the convergence of AVI. The SNRDD assumption also ensures the convergence of linear Q-learning, and its relationship with the convergence of AVI is examined. Lastly, several interesting observations on the solution of PBE are provided when using $\epsilon$-greedy policy.
arXiv:2412.18370v3 Announce Type: replace-cross
Abstract: Graph neural networks (GNNs) have emerged as an effective tool for fraud detection, identifying fraudulent users, and uncovering malicious behaviors. However, attacks against GNN-based fraud detectors and their risks have rarely been studied, thereby leaving potential threats unaddressed. Recent findings suggest that frauds are increasingly organized as gangs or groups. In this work, we design attack scenarios where fraud gangs aim to make their fraud nodes misclassified as benign by camouflaging their illicit activities in collusion. Based on these scenarios, we study adversarial attacks against GNN-based fraud detectors by simulating attacks of fraud gangs in three real-world fraud cases: spam reviews, fake news, and medical insurance frauds. We define these attacks as multi-target graph injection attacks and propose MonTi, a transformer-based Multi-target one-Time graph injection attack model. MonTi simultaneously generates attributes and edges of all attack nodes with a transformer encoder, capturing interdependencies between attributes and edges more effectively than most existing graph injection attack methods that generate these elements sequentially. Additionally, MonTi adaptively allocates the degree budget for each attack node to explore diverse injection structures involving target, candidate, and attack nodes, unlike existing methods that fix the degree budget across all attack nodes. Experiments show that MonTi outperforms the state-of-the-art graph injection attack methods on five real-world graphs.
arXiv:2504.11011v1 Announce Type: cross
Abstract: The internet contains large amounts of low-quality content, yet users expect web search engines to deliver high-quality, relevant results. The abundant presence of low-quality pages can negatively impact retrieval and crawling processes by wasting resources on these documents. Therefore, search engines can greatly benefit from techniques that leverage efficient quality estimation methods to mitigate these negative impacts. Quality scoring methods for web pages are useful for many processes typical for web search systems, including static index pruning, index tiering, and crawling. Building on work by Chang et al.~\cite{chang2024neural}, who proposed using neural estimators of semantic quality for static index pruning, we extend their approach and apply their neural quality scorers to assess the semantic quality of web pages in crawling prioritisation tasks. In our experimental analysis, we found that prioritising semantically high-quality pages over low-quality ones can improve downstream search effectiveness. Our software contribution consists of a Docker container that computes an effective quality score for a given web page, allowing the quality scorer to be easily included and used in other components of web search systems.
arXiv:2504.11168v1 Announce Type: cross
Abstract: Large Language Models (LLMs) guardrail systems are designed to protect against prompt injection and jailbreak attacks. However, they remain vulnerable to evasion techniques. We demonstrate two approaches for bypassing LLM prompt injection and jailbreak detection systems via traditional character injection methods and algorithmic Adversarial Machine Learning (AML) evasion techniques. Through testing against six prominent protection systems, including Microsoft's Azure Prompt Shield and Meta's Prompt Guard, we show that both methods can be used to evade detection while maintaining adversarial utility achieving in some instances up to 100% evasion success. Furthermore, we demonstrate that adversaries can enhance Attack Success Rates (ASR) against black-box targets by leveraging word importance ranking computed by offline white-box models. Our findings reveal vulnerabilities within current LLM protection mechanisms and highlight the need for more robust guardrail systems.
arXiv:2504.10556v1 Announce Type: cross
Abstract: Distributed learning and Edge AI necessitate efficient data processing, low-latency communication, decentralized model training, and stringent data privacy to facilitate real-time intelligence on edge devices while reducing dependency on centralized infrastructure and ensuring high model performance. In the context of global navigation satellite system (GNSS) applications, the primary objective is to accurately monitor and classify interferences that degrade system performance in distributed environments, thereby enhancing situational awareness. To achieve this, machine learning (ML) models can be deployed on low-resource devices, ensuring minimal communication latency and preserving data privacy. The key challenge is to compress ML models while maintaining high classification accuracy. In this paper, we propose variational autoencoders (VAEs) for disentanglement to extract essential latent features that enable accurate classification of interferences. We demonstrate that the disentanglement approach can be leveraged for both data compression and data augmentation by interpolating the lower-dimensional latent representations of signal power. To validate our approach, we evaluate three VAE variants - vanilla, factorized, and conditional generative - on four distinct datasets, including two collected in controlled indoor environments and two real-world highway datasets. Additionally, we conduct extensive hyperparameter searches to optimize performance. Our proposed VAE achieves a data compression rate ranging from 512 to 8,192 and achieves an accuracy up to 99.92%.
arXiv:2410.15756v2 Announce Type: replace-cross
Abstract: Ensuring correctness is crucial for code generation. Formal verification offers a definitive assurance of correctness, but demands substantial human effort in proof construction and hence raises a pressing need for automation. The primary obstacle lies in the severe lack of data-there is much fewer proofs than code snippets for Large Language Models (LLMs) to train upon. In this paper, we introduce SAFE, a framework that overcomes the lack of human-written proofs to enable automated proof generation of Rust code. SAFE establishes a self-evolving cycle where data synthesis and fine-tuning collaborate to enhance the model capability, leveraging the definitive power of a symbolic verifier in telling correct proofs from incorrect ones. SAFE also re-purposes the large number of synthesized incorrect proofs to train the self-debugging capability of the fine-tuned models, empowering them to fix incorrect proofs based on the verifier's feedback. SAFE demonstrates superior efficiency and precision compared to GPT-4o. Through tens of thousands of synthesized proofs and the self-debugging mechanism, we improve the capability of open-source models, initially unacquainted with formal verification, to automatically write proofs for Rust code. This advancement leads to a significant improvement in performance, achieving a 52.52% accuracy rate in a benchmark crafted by human experts, a significant leap over GPT-4o's performance of 14.39%.
arXiv:2504.11130v1 Announce Type: cross
Abstract: This paper demonstrates that in classification problems, fully connected neural networks (FCNs) and residual neural networks (ResNets) cannot be approximated by kernel logistic regression based on the Neural Tangent Kernel (NTK) under overtraining (i.e., when training time approaches infinity). Specifically, when using the cross-entropy loss, regardless of how large the network width is (as long as it is finite), the empirical NTK diverges from the NTK on the training samples as training time increases. To establish this result, we first demonstrate the strictly positive definiteness of the NTKs for multi-layer FCNs and ResNets. Then, we prove that during training, % with the cross-entropy loss, the neural network parameters diverge if the smallest eigenvalue of the empirical NTK matrix (Gram matrix) with respect to training samples is bounded below by a positive constant. This behavior contrasts sharply with the lazy training regime commonly observed in regression problems. Consequently, using a proof by contradiction, we show that the empirical NTK does not uniformly converge to the NTK across all times on the training samples as the network width increases. We validate our theoretical results through experiments on both synthetic data and the MNIST classification task. This finding implies that NTK theory is not applicable in this context, with significant theoretical implications for understanding neural networks in classification problems.
arXiv:2504.04383v2 Announce Type: replace
Abstract: Large reasoning models exhibit remarkable reasoning capabilities via long, elaborate reasoning trajectories. Supervised fine-tuning on such reasoning traces, also known as distillation, can be a cost-effective way to boost reasoning capabilities of student models. However, empirical observations reveal that these reasoning trajectories are often suboptimal, switching excessively between different lines of thought, resulting in under-thinking, over-thinking, and even degenerate responses. We introduce Retro-Search, an MCTS-inspired search algorithm, for distilling higher quality reasoning paths from large reasoning models. Retro-Search retrospectively revises reasoning paths to discover better, yet shorter traces, which can then lead to student models with enhanced reasoning capabilities with shorter, thus faster inference. Our approach can enable two use cases: self-improvement, where models are fine-tuned on their own Retro-Search-ed thought traces, and weak-to-strong improvement, where a weaker model revises stronger model's thought traces via Retro-Search. For self-improving, R1-distill-7B, fine-tuned on its own Retro-Search-ed traces, reduces the average reasoning length by 31.2% while improving performance by 7.7% across seven math benchmarks. For weak-to-strong improvement, we retrospectively revise R1-671B's traces from the OpenThoughts dataset using R1-distill-32B as the Retro-Search-er, a model 20x smaller. Qwen2.5-32B, fine-tuned on this refined data, achieves performance comparable to R1-distill-32B, yielding an 11.3% reduction in reasoning length and a 2.4% performance improvement compared to fine-tuning on the original OpenThoughts data. Our work counters recently emergent viewpoints that question the relevance of search algorithms in the era of large reasoning models, by demonstrating that there are still opportunities for algorithmic advancements, even for frontier models.
arXiv:2405.15907v2 Announce Type: replace
Abstract: Planning in real-world settings often entails addressing partial observability while aligning with users' requirements. We present a novel framework for expressing users' constraints and preferences about agent behavior in a partially observable setting using parameterized belief-state query (BSQ) policies in the setting of goal-oriented partially observable Markov decision processes (gPOMDPs). We present the first formal analysis of such constraints and prove that while the expected cost function of a parameterized BSQ policy w.r.t its parameters is not convex, it is piecewise constant and yields an implicit discrete parameter search space that is finite for finite horizons. This theoretical result leads to novel algorithms that optimize gPOMDP agent behavior with guaranteed user alignment. Analysis proves that our algorithms converge to the optimal user-aligned behavior in the limit. Empirical results show that parameterized BSQ policies provide a computationally feasible approach for user-aligned planning in partially observable settings.
arXiv:2502.19596v2 Announce Type: replace
Abstract: RAG has become a key technique for enhancing LLMs by reducing hallucinations, especially in domain expert systems where LLMs may lack sufficient inherent knowledge. However, developing these systems in low-resource settings introduces several challenges: (1) handling heterogeneous data sources, (2) optimizing retrieval phase for trustworthy answers, and (3) evaluating generated answers across diverse aspects. To address these, we introduce a data generation pipeline that transforms raw multi-modal data into structured corpus and Q&A pairs, an advanced re-ranking phase improving retrieval precision, and a reference matching algorithm enhancing answer traceability. Applied to the automotive engineering domain, our system improves factual correctness (+1.94), informativeness (+1.16), and helpfulness (+1.67) over a non-RAG baseline, based on a 1-5 scale by an LLM judge. These results highlight the effectiveness of our approach across distinct aspects, with strong answer grounding and transparency.
arXiv:2504.11336v1 Announce Type: cross
Abstract: The structure of causal language model training assumes that each token can be accurately predicted from the previous context. This contrasts with humans' natural writing and reasoning process, where goals are typically known before the exact argument or phrasings. While this mismatch has been well studied in the literature, the working assumption has been that architectural changes are needed to address this mismatch. We argue that rearranging and processing the training data sequences can allow models to more accurately imitate the true data-generating process, and does not require any other changes to the architecture or training infrastructure. We demonstrate that this technique, Trelawney, and the inference algorithms derived from it allow us to improve performance on several key benchmarks that span planning, algorithmic reasoning, and story generation tasks. Finally, our method naturally enables the generation of long-term goals at no additional cost. We investigate how using the model's goal-generation capability can further improve planning and reasoning. Additionally, we believe Trelawney could potentially open doors to new capabilities beyond the current language modeling paradigm.
arXiv:2504.11083v1 Announce Type: cross
Abstract: As large language models scale up, the conventional attention mechanism faces critical challenges of exponential growth in memory consumption and energy costs. Quantum annealing computing, with its inherent advantages in computational efficiency and low energy consumption, offers an innovative direction for constructing novel deep learning architectures. This study proposes the first Quantum Annealing-based Multi-head Attention (QAMA) mechanism, achieving seamless compatibility with classical attention architectures through quadratic unconstrained binary optimization (QUBO) modeling of forward propagation and energy-based backpropagation. The method innovatively leverages the quantum bit interaction characteristics of Ising models to optimize the conventional $O(n^2)$ spatiotemporal complexity into linear resource consumption. Integrated with the optical computing advantages of coherent Ising machines (CIM), the system maintains millisecond-level real-time responsiveness while significantly reducing energy consumption. Our key contributions include: Theoretical proofs establish QAMA mathematical equivalence to classical attention mechanisms; Dual optimization of multi-head specificity and long-range information capture via QUBO constraints; Explicit gradient proofs for the Ising energy equation are utilized to implement gradient conduction as the only path in the computational graph as a layer; Proposed soft selection mechanism overcoming traditional binary attention limitations to approximate continuous weights. Experiments on QBoson CPQC quantum computer show QAMA achieves comparable accuracy to classical operators while reducing inference time to millisecond level and improving solution quality. This work pioneers architectural-level integration of quantum computing and deep learning, applicable to any attention-based model, driving paradigm innovation in AI foundational computing.
arXiv:2504.10821v1 Announce Type: cross
Abstract: This study investigates the classification of progressive rock music, a genre characterized by complex compositions and diverse instrumentation, distinct from other musical styles. Addressing this Music Information Retrieval (MIR) task, we extracted comprehensive audio features, including spectrograms, Mel-Frequency Cepstral Coefficients (MFCCs), chromagrams, and beat positions from song snippets using the Librosa library. A winner-take-all voting strategy was employed to aggregate snippet-level predictions into final song classifications. We conducted a comparative analysis of various machine learning techniques. Ensemble methods, encompassing Bagging (Random Forest, ExtraTrees, Bagging Classifier) and Boosting (XGBoost, Gradient Boosting), were explored, utilizing Principal Component Analysis (PCA) for dimensionality reduction to manage computational constraints with high-dimensional feature sets. Additionally, deep learning approaches were investigated, including the development of custom 1D Convolutional Neural Network (1D CNN) architectures (named "Zuck" and "Satya") featuring specific layer configurations, normalization, and activation functions. Furthermore, we fine-tuned a state-of-the-art Audio Spectrogram Transformer (AST) model, leveraging its attention-based mechanisms for audio classification. Performance evaluation on validation and test sets revealed varying effectiveness across models, with ensemble methods like Extra Trees achieving test accuracies up to 76.38%. This research provides insights into the application and relative performance of diverse machine learning paradigms for the nuanced task of progressive rock genre classification.
arXiv:2409.10168v2 Announce Type: replace-cross
Abstract: Despite being an integral tool for finding health-related information online, YouTube has faced criticism for disseminating COVID-19 misinformation globally to its users. Yet, prior audit studies have predominantly investigated YouTube within the Global North contexts, often overlooking the Global South. To address this gap, we conducted a comprehensive 10-day geolocation-based audit on YouTube to compare the prevalence of COVID-19 misinformation in search results between the United States (US) and South Africa (SA), the countries heavily affected by the pandemic in the Global North and the Global South, respectively. For each country, we selected 3 geolocations and placed sock-puppets, or bots emulating "real" users, that collected search results for 48 search queries sorted by 4 search filters for 10 days, yielding a dataset of 915K results. We found that 31.55% of the top-10 search results contained COVID-19 misinformation. Among the top-10 search results, bots in SA faced significantly more misinformative search results than their US counterparts. Overall, our study highlights the contrasting algorithmic behaviors of YouTube search between two countries, underscoring the need for the platform to regulate algorithmic behavior consistently across different regions of the Globe.
arXiv:2504.04808v2 Announce Type: replace-cross
Abstract: Practitioners are increasingly turning to Extract-Load-Transform (ELT) pipelines with the widespread adoption of cloud data warehouses. However, designing these pipelines often involves significant manual work to ensure correctness. Recent advances in AI-based methods, which have shown strong capabilities in data tasks, such as text-to-SQL, present an opportunity to alleviate manual efforts in developing ELT pipelines. Unfortunately, current benchmarks in data engineering only evaluate isolated tasks, such as using data tools and writing data transformation queries, leaving a significant gap in evaluating AI agents for generating end-to-end ELT pipelines.
To fill this gap, we introduce ELT-Bench, an end-to-end benchmark designed to assess the capabilities of AI agents to build ELT pipelines. ELT-Bench consists of 100 pipelines, including 835 source tables and 203 data models across various domains. By simulating realistic scenarios involving the integration of diverse data sources and the use of popular data tools, ELT-Bench evaluates AI agents' abilities in handling complex data engineering workflows. AI agents must interact with databases and data tools, write code and SQL queries, and orchestrate every pipeline stage. We evaluate two representative code agent frameworks, Spider-Agent and SWE-Agent, using six popular Large Language Models (LLMs) on ELT-Bench. The highest-performing agent, Spider-Agent Claude-3.7-Sonnet with extended thinking, correctly generates only 3.9% of data models, with an average cost of $4.30 and 89.3 steps per pipeline. Our experimental results demonstrate the challenges of ELT-Bench and highlight the need for a more advanced AI agent to reduce manual effort in ELT workflows. Our code and data are available at https://github.com/uiuc-kang-lab/ELT-Bench.
arXiv:2501.17688v3 Announce Type: replace-cross
Abstract: This paper presents Contourformer, a real-time contour-based instance segmentation algorithm. The method is fully based on the DETR paradigm and achieves end-to-end inference through iterative and progressive mechanisms to optimize contours. To improve efficiency and accuracy, we develop two novel techniques: sub-contour decoupling mechanisms and contour fine-grained distribution refinement. In the sub-contour decoupling mechanism, we propose a deformable attention-based module that adaptively selects sampling regions based on the current predicted contour, enabling more effective capturing of object boundary information. Additionally, we design a multi-stage optimization process to enhance segmentation precision by progressively refining sub-contours. The contour fine-grained distribution refinement technique aims to further improve the ability to express fine details of contours. These innovations enable Contourformer to achieve stable and precise segmentation for each instance while maintaining real-time performance. Extensive experiments demonstrate the superior performance of Contourformer on multiple benchmark datasets, including SBD, COCO, and KINS. We conduct comprehensive evaluations and comparisons with existing state-of-the-art methods, showing significant improvements in both accuracy and inference speed. This work provides a new solution for contour-based instance segmentation tasks and lays a foundation for future research, with the potential to become a strong baseline method in this field.
arXiv:2504.10810v1 Announce Type: cross
Abstract: Adoption of AI driven techniques in public services remains low due to challenges related to accuracy and speed of information at population scale. Computer vision techniques for traffic monitoring have not gained much popularity despite their relative strength in areas such as autonomous driving. Despite large number of academic methods for Automatic License Plate Recognition (ALPR) systems, very few provide an end to end solution for patrolling in the city. This paper presents a novel prototype for a low power GPU based patrolling system to be deployed in an urban environment on surveillance vehicles for automated vehicle detection, recognition and tracking. In this work, we propose a complete ALPR system for Singapore license plates having both single and double line creating our own YOLO based network. We focus on unconstrained capture scenarios as would be the case in real world application, where the license plate (LP) might be considerably distorted due to oblique views. In this work, we first detect the license plate from the full image using RFB-Net and rectify multiple distorted license plates in a single image. After that, the detected license plate image is fed to our network for character recognition. We evaluate the performance of our proposed system on a newly built dataset covering more than 16,000 images. The system was able to correctly detect license plates with 86\% precision and recognize characters of a license plate in 67\% of the test set, and 89\% accuracy with one incorrect character (partial match). We also test latency of our system and achieve 64FPS on Tesla P4 GPU
arXiv:2504.10561v1 Announce Type: cross
Abstract: Continual Learning (CL) epitomizes an advanced training paradigm wherein prior data samples remain inaccessible during the acquisition of new tasks. Numerous investigations have delved into leveraging a pre-trained Vision Transformer (ViT) to enhance model efficacy in continual learning. Nonetheless, these approaches typically utilize a singular, static backbone, which inadequately adapts to novel tasks, particularly when engaging with diverse data domains, due to a substantial number of inactive parameters. This paper addresses this limitation by introducing an innovative Self-Controlled Dynamic Expansion Model (SCDEM), which orchestrates multiple distinct trainable pre-trained ViT backbones to furnish diverse and semantically enriched representations. Specifically, by employing the multi-backbone architecture as a shared module, the proposed SCDEM dynamically generates a new expert with minimal parameters to accommodate a new task. A novel Collaborative Optimization Mechanism (COM) is introduced to synergistically optimize multiple backbones by harnessing prediction signals from historical experts, thereby facilitating new task learning without erasing previously acquired knowledge. Additionally, a novel Feature Distribution Consistency (FDC) approach is proposed to align semantic similarity between previously and currently learned representations through an optimal transport distance-based mechanism, effectively mitigating negative knowledge transfer effects. Furthermore, to alleviate over-regularization challenges, this paper presents a novel Dynamic Layer-Wise Feature Attention Mechanism (DLWFAM) to autonomously determine the penalization intensity on each trainable representation layer. An extensive series of experiments have been conducted to evaluate the proposed methodology's efficacy, with empirical results corroborating that the approach attains state-of-the-art performance.
arXiv:2504.11440v1 Announce Type: cross
Abstract: In many optimization domains, there are multiple different solvers that contribute to the overall state-of-the-art, each performing better on some, and worse on other types of problem instances. Meta-algorithmic approaches, such as instance-based algorithm selection, configuration and scheduling, aim to close this gap by extracting the most performance possible from a set of (configurable) optimizers. In this context, the best performing individual algorithms are often hand-crafted hybrid heuristics which perform many restarts of fast local optimization approaches. However, data-driven techniques to create optimized restart schedules have not yet been extensively studied.
Here, we present a simple scheduling approach that iteratively selects the algorithm performing best on the distribution of unsolved training problems at time of selection, resulting in a problem-independent solver schedule. We demonstrate our approach using well-known optimizers from numerical black-box optimization on the BBOB testbed, bridging much of the gap between single and virtual best solver from the original portfolio across various evaluation protocols. Our greedy restart schedule presents a powerful baseline for more complex dynamic algorithm selection models.
arXiv:2407.21467v2 Announce Type: replace-cross
Abstract: Childhood myopia constitutes a significant global health concern. It exhibits an escalating prevalence and has the potential to evolve into severe, irreversible conditions that detrimentally impact familial well-being and create substantial economic costs. Contemporary research underscores the importance of precisely predicting myopia progression to enable timely and effective interventions, thereby averting severe visual impairment in children. Such predictions predominantly rely on subjective clinical assessments, which are inherently biased and resource-intensive, thus hindering their widespread application. In this study, we introduce a novel, high-accuracy method for quantitatively predicting the myopic trajectory and myopia risk in children using only fundus images and baseline refraction data. This approach was validated through a six-year longitudinal study of 3,408 children in Henan, utilizing 16,211 fundus images and corresponding refractive data. Our method based on deep learning demonstrated predictive accuracy with an error margin of 0.311D per year and AUC scores of 0.944 and 0.995 for forecasting the risks of developing myopia and high myopia, respectively. These findings confirm the utility of our model in supporting early intervention strategies and in significantly reducing healthcare costs, particularly by obviating the need for additional metadata and repeated consultations. Furthermore, our method was designed to rely only on fundus images and refractive error data, without the need for meta data or multiple inquiries from doctors, strongly reducing the associated medical costs and facilitating large-scale screening. Our model can even provide good predictions based on only a single time measurement. Consequently, the proposed method is an important means to reduce medical inequities caused by economic disparities.
arXiv:2504.10497v1 Announce Type: cross
Abstract: The swift progress of Generative Artificial intelligence (GenAI), notably Large Language Models (LLMs), is reshaping the digital landscape. Recognizing this transformative potential, the National Research Council of Canada (NRC) launched a pilot initiative to explore the integration of GenAI techniques into its daily operation for performance excellence, where 22 projects were launched in May 2024. Within these projects, this paper presents the development of the intelligent agent Pubbie as a case study, targeting the automation of performance measurement, data management and insight reporting at the NRC. Cutting-edge techniques are explored, including LLM orchestration and semantic embedding via RoBERTa, while strategic fine-tuning and few-shot learning approaches are incorporated to infuse domain knowledge at an affordable cost. The user-friendly interface of Pubbie allows general government users to input queries in natural language and easily upload or download files with a simple button click, greatly reducing manual efforts and accessibility barriers.