Latest AI News & Updates

arXiv:2408.08055v2 Announce Type: replace-cross
Abstract: Neural ODEs are a prominent branch of methods designed to capture the temporal evolution of complex time-stamped data. Their idea is to solve an ODE with Neural Network-defined dynamics, which take the immediate parameters of the observed system into account. However, larger integration intervals cause instability, which forces most modern methods to normalize time to $[0, 1]$. We provably stabilize these models by introducing an adaptive negative feedback mechanism. This modification allows for longer integration, which in turn implies higher expressiveness, mirroring the behaviour of increasing depth in conventional Neural Networks.Additionally, it provides intriguing theoretical properties: forgetfulness and missing-value robustness. For three open datasets, our method obtains up to 20\% improvements in downstream quality if compared to existing baselines, including State Space Models and Neural~CDEs.

arXiv:2501.15392v3 Announce Type: replace-cross
Abstract: As software systems become more complex and configurable, more performance problems tend to arise from the configuration designs. This has caused some configuration options to unexpectedly degrade performance which deviates from their original expectations designed by the developers. Such discrepancies, namely configuration performance bugs (CPBugs), are devastating and can be deeply hidden in the source code. Yet, efficiently testing CPBugs is difficult, not only due to the test oracle is hard to set, but also because the configuration measurement is expensive and there are simply too many possible configurations to test. As such, existing testing tools suffer from lengthy runtime or have been ineffective in detecting CPBugs when the budget is limited, compounded by inaccurate test oracle. In this paper, we seek to achieve significantly faster CPBug testing by neurally prioritizing the testing at both the configuration option and value range levels with automated oracle estimation. Our proposed tool, dubbed NDP, is a general framework that works with different heuristic generators. The idea is to leverage two neural language models: one to estimate the CPBug types that serve as the oracle while, more vitally, the other to infer the probabilities of an option being CPBug-related, based on which the options and the value ranges to be searched can be prioritized. Experiments on several widely-used systems of different versions reveal that NDP can, in general, better predict CPBug type in 87% cases and find more CPBugs with up to 88.88x testing efficiency speedup over the state-of-the-art tools.

arXiv:2504.10646v1 Announce Type: cross
Abstract: Large language models (LLMs) have demonstrated remarkable reasoning capabilities when prompted with strategies such as Chain-of-Thought (CoT). However, these approaches focus on token-level output without considering internal weight dynamics. We introduce Weight-of-Thought (WoT) reasoning, a novel approach that examines neural network weights before inference to identify reasoning pathways. Unlike existing methods, WoT explores the weight space through graph-based message passing, multi-step reasoning processes, and attention mechanisms. Our implementation creates an interconnected graph of reasoning nodes. Experiments on diverse reasoning tasks (syllogistic, mathematical, algebraic, combinatorial, and geometric) demonstrate that WoT achieves superior performance compared to traditional methods, particularly for complex problems. This approach leads to both improved performance and greater interpretability of the reasoning process, offering a promising direction for enhancing LLM reasoning capabilities.

arXiv:2504.10883v1 Announce Type: cross
Abstract: Diffusion models have recently gained state of the art performance on many image generation tasks. However, most models require significant computational resources to achieve this. This becomes apparent in the application of medical image synthesis due to the 3D nature of medical datasets like CT-scans, MRIs, electron microscope, etc. In this paper we propose a novel architecture for a single GPU memory-efficient training for diffusion models for high dimensional medical datasets. The proposed model is built by using an invertible UNet architecture with invertible attention modules. This leads to the following two contributions: 1. denoising diffusion models and thus enabling memory usage to be independent of the dimensionality of the dataset, and 2. reducing the energy usage during training. While this new model can be applied to a multitude of image generation tasks, we showcase its memory-efficiency on the 3D BraTS2020 dataset leading to up to 15\% decrease in peak memory consumption during training with comparable results to SOTA while maintaining the image quality.

arXiv:2409.14740v2 Announce Type: replace-cross
Abstract: In different NLP tasks, detecting harmful content is crucial for online environments, especially with the growing influence of social media. However, previous research has two main issues: 1) a lack of data in low-resource settings, and 2) inconsistent definitions and criteria for judging harmful content, requiring classification models to be robust to spurious features and diverse. We propose Toxicraft, a novel framework for synthesizing datasets of harmful information to address these weaknesses. With only a small amount of seed data, our framework can generate a wide variety of synthetic, yet remarkably realistic, examples of toxic information. Experimentation across various datasets showcases a notable enhancement in detection model robustness and adaptability, surpassing or close to the gold labels.

arXiv:2504.11426v1 Announce Type: cross
Abstract: Knowledge distillation (KD) is a promising solution to compress large language models (LLMs) by transferring their knowledge to smaller models. During this process, white-box KD methods usually minimize the distance between the output distributions of the teacher model and the student model to transfer more information. However, we reveal that the current white-box KD framework exhibits two limitations: a) bridging probability distributions from different output spaces will limit the similarity between the teacher model and the student model; b) this framework cannot be applied to LLMs with different vocabularies. One of the root causes for these limitations is that the distributions from the teacher and the student for KD are output by different prediction heads, which yield distributions in different output spaces and dimensions. Therefore, in this paper, we propose a dual-space knowledge distillation (DSKD) framework that unifies the prediction heads of the teacher and the student models for KD. Specifically, we first introduce two projectors with ideal initialization to project the teacher/student hidden states into the student/teacher representation spaces. After this, the hidden states from different models can share the same head and unify the output spaces of the distributions. Furthermore, we develop an exact token alignment (ETA) algorithm to align the same tokens in two differently-tokenized sequences. Based on the above, our DSKD framework is a general KD framework that supports both off-policy and on-policy KD, and KD between any two LLMs regardless of their vocabularies. Extensive experiments on instruction-following, mathematical reasoning, and code generation benchmarks show that DSKD significantly outperforms existing methods based on the current white-box KD framework and surpasses other cross-tokenizer KD methods for LLMs with different vocabularies.

arXiv:2504.11182v1 Announce Type: cross
Abstract: The fusion of Large Language Models (LLMs) with recommender systems (RecSys) has dramatically advanced personalized recommendations and drawn extensive attention. Despite the impressive progress, the safety of LLM-based RecSys against backdoor attacks remains largely under-explored. In this paper, we raise a new problem: Can a backdoor with a specific trigger be injected into LLM-based Recsys, leading to the manipulation of the recommendation responses when the backdoor trigger is appended to an item's title? To investigate the vulnerabilities of LLM-based RecSys under backdoor attacks, we propose a new attack framework termed Backdoor Injection Poisoning for RecSys (BadRec). BadRec perturbs the items' titles with triggers and employs several fake users to interact with these items, effectively poisoning the training set and injecting backdoors into LLM-based RecSys. Comprehensive experiments reveal that poisoning just 1% of the training data with adversarial examples is sufficient to successfully implant backdoors, enabling manipulation of recommendations. To further mitigate such a security threat, we propose a universal defense strategy called Poison Scanner (P-Scanner). Specifically, we introduce an LLM-based poison scanner to detect the poisoned items by leveraging the powerful language understanding and rich knowledge of LLMs. A trigger augmentation agent is employed to generate diverse synthetic triggers to guide the poison scanner in learning domain-specific knowledge of the poisoned item detection task. Extensive experiments on three real-world datasets validate the effectiveness of the proposed P-Scanner.

arXiv:2504.11243v1 Announce Type: new
Abstract: We study the automated derivation of safety requirements in a self-driving vehicle use case, leveraging LLMs in combination with agent-based retrieval-augmented generation. Conventional approaches that utilise pre-trained LLMs to assist in safety analyses typically lack domain-specific knowledge. Existing RAG approaches address this issue, yet their performance deteriorates when handling complex queries and it becomes increasingly harder to retrieve the most relevant information. This is particularly relevant for safety-relevant applications. In this paper, we propose the use of agent-based RAG to derive safety requirements and show that the retrieved information is more relevant to the queries. We implement an agent-based approach on a document pool of automotive standards and the Apollo case study, as a representative example of an automated driving perception system. Our solution is tested on a data set of safety requirement questions and answers, extracted from the Apollo data. Evaluating a set of selected RAG metrics, we present and discuss advantages of a agent-based approach compared to default RAG methods.

arXiv:2504.11038v1 Announce Type: cross
Abstract: In typical multimodal tasks, such as Visual Question Answering (VQA), adversarial attacks targeting a specific image and question can lead large vision-language models (LVLMs) to provide incorrect answers. However, it is common for a single image to be associated with multiple questions, and LVLMs may still answer other questions correctly even for an adversarial image attacked by a specific question. To address this, we introduce the query-agnostic visual attack (QAVA), which aims to create robust adversarial examples that generate incorrect responses to unspecified and unknown questions. Compared to traditional adversarial attacks focused on specific images and questions, QAVA significantly enhances the effectiveness and efficiency of attacks on images when the question is unknown, achieving performance comparable to attacks on known target questions. Our research broadens the scope of visual adversarial attacks on LVLMs in practical settings, uncovering previously overlooked vulnerabilities, particularly in the context of visual adversarial threats. The code is available at https://github.com/btzyd/qava.

arXiv:2407.07082v3 Announce Type: replace-cross
Abstract: While reinforcement learning (RL) holds great potential for decision making in the real world, it suffers from a number of unique difficulties which often need specific consideration. In particular: it is highly non-stationary; suffers from high degrees of plasticity loss; and requires exploration to prevent premature convergence to local optima and maximize return. In this paper, we consider whether learned optimization can help overcome these problems. Our method, Learned Optimization for Plasticity, Exploration and Non-stationarity (OPEN), meta-learns an update rule whose input features and output structure are informed by previously proposed solutions to these difficulties. We show that our parameterization is flexible enough to enable meta-learning in diverse learning contexts, including the ability to use stochasticity for exploration. Our experiments demonstrate that when meta-trained on single and small sets of environments, OPEN outperforms or equals traditionally used optimizers. Furthermore, OPEN shows strong generalization characteristics across a range of environments and agent architectures.

arXiv:2504.11014v1 Announce Type: cross
Abstract: The emerging trend in computer vision emphasizes developing universal models capable of simultaneously addressing multiple diverse tasks. Such universality typically requires joint training across multi-domain datasets to ensure effective generalization. However, monocular 3D object detection presents unique challenges in multi-domain training due to the scarcity of datasets annotated with accurate 3D ground-truth labels, especially beyond typical road-based autonomous driving contexts. To address this challenge, we introduce a novel weakly supervised framework leveraging pseudo-labels. Current pretrained models often struggle to accurately detect pedestrians in non-road environments due to inherent dataset biases. Unlike generalized image-based 2D object detection models, achieving similar generalization in monocular 3D detection remains largely unexplored. In this paper, we propose GATE3D, a novel framework designed specifically for generalized monocular 3D object detection via weak supervision. GATE3D effectively bridges domain gaps by employing consistency losses between 2D and 3D predictions. Remarkably, our model achieves competitive performance on the KITTI benchmark as well as on an indoor-office dataset collected by us to evaluate the generalization capabilities of our framework. Our results demonstrate that GATE3D significantly accelerates learning from limited annotated data through effective pre-training strategies, highlighting substantial potential for broader impacts in robotics, augmented reality, and virtual reality applications. Project page: https://ies0411.github.io/GATE3D/

arXiv:2410.10762v4 Announce Type: replace
Abstract: Large language models (LLMs) have demonstrated remarkable potential in solving complex tasks across diverse domains, typically by employing agentic workflows that follow detailed instructions and operational sequences. However, constructing these workflows requires significant human effort, limiting scalability and generalizability. Recent research has sought to automate the generation and optimization of these workflows, but existing methods still rely on initial manual setup and fall short of achieving fully automated and effective workflow generation. To address this challenge, we reformulate workflow optimization as a search problem over code-represented workflows, where LLM-invoking nodes are connected by edges. We introduce AFlow, an automated framework that efficiently explores this space using Monte Carlo Tree Search, iteratively refining workflows through code modification, tree-structured experience, and execution feedback. Empirical evaluations across six benchmark datasets demonstrate AFlow's efficacy, yielding a 5.7% average improvement over state-of-the-art baselines. Furthermore, AFlow enables smaller models to outperform GPT-4o on specific tasks at 4.55% of its inference cost in dollars. The code is available at https://github.com/FoundationAgents/AFlow.

arXiv:2504.10508v1 Announce Type: cross
Abstract: Retrieval-Augmented Generation (RAG) has emerged as an effective paradigm for generating contextually accurate answers by integrating Large Language Models (LLMs) with retrieval mechanisms. However, in legal contexts, users frequently reference norms by their labels or nicknames (e.g., Article 5 of the Constitution or Consumer Defense Code (CDC)), rather than by their content, posing challenges for traditional RAG approaches that rely solely on semantic embeddings of text. Furthermore, legal texts themselves heavily rely on explicit cross-references (e.g., "pursuant to Article 34") that function as pointers. Both scenarios pose challenges for traditional RAG approaches that rely solely on semantic embeddings of text, often failing to retrieve the necessary referenced content. This paper introduces Poly-Vector Retrieval, a method assigning multiple distinct embeddings to each legal provision: one embedding captures the content (the full text), another captures the label (the identifier or proper name), and optionally additional embeddings capture alternative denominations. Inspired by Frege's distinction between Sense and Reference, this poly-vector retrieval approach treats labels, identifiers and reference markers as rigid designators and content embeddings as carriers of semantic substance. Experiments on the Brazilian Federal Constitution demonstrate that Poly-Vector Retrieval significantly improves retrieval accuracy for label-centric queries and potential to resolve internal and external cross-references, without compromising performance on purely semantic queries. The study discusses philosophical and practical implications of explicitly separating reference from content in vector embeddings and proposes future research directions for applying this approach to broader legal datasets and other domains characterized by explicit reference identifiers.

arXiv:2504.10548v1 Announce Type: cross
Abstract: Recent advances in Large Language Model (LLM) based Generative AI techniques have made it feasible to translate enterprise-level code from legacy languages such as COBOL to modern languages such as Java or Python. While the results of LLM-based automatic transformation are encouraging, the resulting code cannot be trusted to correctly translate the original code, making manual validation of translated Java code from COBOL a necessary but time-consuming and labor-intensive process. In this paper, we share our experience of developing a testing framework for IBM Watsonx Code Assistant for Z (WCA4Z) [5], an industrial tool designed for COBOL to Java translation. The framework automates the process of testing the functional equivalence of the translated Java code against the original COBOL programs in an industry context. Our framework uses symbolic execution to generate unit tests for COBOL, mocking external calls and transforming them into JUnit tests to validate semantic equivalence with translated Java. The results not only help identify and repair any detected discrepancies but also provide feedback to improve the AI model.

arXiv:2504.10552v1 Announce Type: cross
Abstract: Neural networks are fundamental in artificial intelligence, driving progress in computer vision and natural language processing. High-quality datasets are crucial for their development, and there is growing interest in datasets composed of neural networks themselves to support benchmarking, automated machine learning (AutoML), and model analysis. We introduce LEMUR, an open source dataset of neural network models with well-structured code for diverse architectures across tasks such as object detection, image classification, segmentation, and natural language processing. LEMUR is primarily designed to enable fine-tuning of large language models (LLMs) for AutoML tasks, providing a rich source of structured model representations and associated performance data. Leveraging Python and PyTorch, LEMUR enables seamless extension to new datasets and models while maintaining consistency. It integrates an Optuna-powered framework for evaluation, hyperparameter optimization, statistical analysis, and graphical insights. LEMUR provides an extension that enables models to run efficiently on edge devices, facilitating deployment in resource-constrained environments. Providing tools for model evaluation, preprocessing, and database management, LEMUR supports researchers and practitioners in developing, testing, and analyzing neural networks. Additionally, it offers an API that delivers comprehensive information about neural network models and their complete performance statistics with a single request, which can be used in experiments with code-generating large language models. The LEMUR will be released as an open source project under the MIT license upon acceptance of the paper.

arXiv:2504.08670v2 Announce Type: replace-cross
Abstract: To build AI interfaces that children can intuitively understand and use, designers need a design grammar that truly serves children's developmental needs. This paper bridges Artificial Intelligence design for children -- an emerging field still defining its best practices -- and children's animation, a well-established field with decades of experience in engaging young viewers through emotionally resonant, cognitively accessible storytelling. Pairing Piagetian developmental theory with design pattern extraction from 52 works of Disney animation, the paper presents six design insights transferable to child-centred AI interface design: (1) emotional expressiveness and visual clarity, (2) musical and auditory scaffolding, (3) audiovisual synchrony for emotional comfort, (4) sidekick-style personas, (5) support for symbolic play and imaginative exploration, and (6) predictable and scaffolded interaction structures. These strategies -- long refined in Disney animation -- function as multimodal scaffolds for attention, understanding, and emotional attunement, thereby forming a structured design grammar familiar to children and transferable to AI interface design. By reframing cinematic storytelling as design logic for AI, the paper offers heuristics for crafting intuitive AI interfaces that align with children's cognitive stages and emotional needs. The work contributes to design theory by showing how sensory, affective and narrative techniques can inform developmentally attuned AI design for children. Future directions include empirical testing, cultural adaptation, and participatory co-design.

arXiv:2504.11109v1 Announce Type: cross
Abstract: Large language models (LLM) have achieved remarkable outcomes in addressing complex problems, including math, coding, and analyzing large amounts of scientific reports. Yet few works have explored the potential of LLM in quantum computing. The most challenging problem is how to leverage LLMs to automatically generate quantum circuits at a large scale. In this paper, we address such a challenge by fine-tuning LLMs and injecting the domain-specific knowledge of quantum computing. In particular, we investigate the mechanisms to generate training data sets and construct the end-to-end pipeline to fine-tune pre-trained LLMs that produce parameterized quantum circuits for optimization problems. We have prepared 14,000 quantum circuits covering a substantial part of the quantum optimization landscape: 12 optimization problem instances and their optimized QAOA, VQE, and adaptive VQE circuits. The fine-tuned LLMs can construct syntactically correct parametrized quantum circuits in the most recent OpenQASM 3.0. We have evaluated the quality of the parameters by comparing them to the optimized expectation values and distributions. Our evaluation shows that the fine-tuned LLM outperforms state-of-the-art models and that the parameters are better than random. The LLM-generated parametrized circuits and initial parameters can be used as a starting point for further optimization, \emph{e.g.,} templates in quantum machine learning and the benchmark for compilers and hardware.

arXiv:2504.10700v1 Announce Type: cross
Abstract: Chemistry Foundation Models (CFMs) that leverage Graph Neural Networks (GNNs) operating on 3D molecular graph structures are becoming indispensable tools for computational chemists and materials scientists. These models facilitate the understanding of matter and the discovery of new molecules and materials. In contrast to GNNs operating on a large homogeneous graphs, GNNs used by CFMs process a large number of geometric graphs of varying sizes, requiring different optimization strategies than those developed for large homogeneous GNNs. This paper presents optimizations for two critical phases of CFM training: data distribution and model training, targeting MACE - a state-of-the-art CFM. We address the challenge of load balancing in data distribution by formulating it as a multi-objective bin packing problem. We propose an iterative algorithm that provides a highly effective, fast, and practical solution, ensuring efficient data distribution. For the training phase, we identify symmetric tensor contraction as the key computational kernel in MACE and optimize this kernel to improve the overall performance. Our combined approach of balanced data distribution and kernel optimization significantly enhances the training process of MACE. Experimental results demonstrate a substantial speedup, reducing per-epoch execution time for training from 12 to 2 minutes on 740 GPUs with a 2.6M sample dataset.

arXiv:2504.11008v1 Announce Type: cross
Abstract: Despite remarkable advancements in pixel-level medical image perception, existing methods are either limited to specific tasks or heavily rely on accurate bounding boxes or text labels as input prompts. However, the medical knowledge required for input is a huge obstacle for general public, which greatly reduces the universality of these methods. Compared with these domain-specialized auxiliary information, general users tend to rely on oral queries that require logical reasoning. In this paper, we introduce a novel medical vision task: Medical Reasoning Segmentation and Detection (MedSD), which aims to comprehend implicit queries about medical images and generate the corresponding segmentation mask and bounding box for the target object. To accomplish this task, we first introduce a Multi-perspective, Logic-driven Medical Reasoning Segmentation and Detection (MLMR-SD) dataset, which encompasses a substantial collection of medical entity targets along with their corresponding reasoning. Furthermore, we propose MediSee, an effective baseline model designed for medical reasoning segmentation and detection. The experimental results indicate that the proposed method can effectively address MedSD with implicit colloquial queries and outperform traditional medical referring segmentation methods.

arXiv:2504.10509v1 Announce Type: cross
Abstract: This study presents a comprehensive reproducibility and extension analysis of the Setwise prompting methodology for zero-shot ranking with Large Language Models (LLMs), as proposed by Zhuang et al. We evaluate its effectiveness and efficiency compared to traditional Pointwise, Pairwise, and Listwise approaches in document ranking tasks. Our reproduction confirms the findings of Zhuang et al., highlighting the trade-offs between computational efficiency and ranking effectiveness in Setwise methods. Building on these insights, we introduce Setwise Insertion, a novel approach that leverages the initial document ranking as prior knowledge, reducing unnecessary comparisons and uncertainty by focusing on candidates more likely to improve the ranking results. Experimental results across multiple LLM architectures (Flan-T5, Vicuna, and Llama) show that Setwise Insertion yields a 31% reduction in query time, a 23% reduction in model inferences, and a slight improvement in reranking effectiveness compared to the original Setwise method. These findings highlight the practical advantage of incorporating prior ranking knowledge into Setwise prompting for efficient and accurate zero-shot document reranking.

arXiv:2310.03026v3 Announce Type: replace-cross
Abstract: Existing learning-based autonomous driving (AD) systems face challenges in comprehending high-level information, generalizing to rare events, and providing interpretability. To address these problems, this work employs Large Language Models (LLMs) as a decision-making component for complex AD scenarios that require human commonsense understanding. We devise cognitive pathways to enable comprehensive reasoning with LLMs, and develop algorithms for translating LLM decisions into actionable driving commands. Through this approach, LLM decisions are seamlessly integrated with low-level controllers by guided parameter matrix adaptation. Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination, thanks to the commonsense reasoning capabilities of LLMs. This paper presents an initial step toward leveraging LLMs as effective decision-makers for intricate AD scenarios in terms of safety, efficiency, generalizability, and interoperability. We aspire for it to serve as inspiration for future research in this field. Project page: https://sites.google.com/view/llm-mpc

arXiv:2504.11239v1 Announce Type: new
Abstract: Reasoning is the fundamental capability of large language models (LLMs). Due to the rapid progress of LLMs, there are two main issues of current benchmarks: i) these benchmarks can be crushed in a short time (less than 1 year), and ii) these benchmarks may be easily hacked. To handle these issues, we propose the ever-scalingness for building the benchmarks which are uncrushable, unhackable, auto-verifiable and general. This paper presents Nondeterministic Polynomial-time Problem Challenge (NPPC), an ever-scaling reasoning benchmark for LLMs. Specifically, the NPPC has three main modules: i) npgym, which provides a unified interface of 25 well-known NP-complete problems and can generate any number of instances with any levels of complexities, ii) npsolver: which provides a unified interface to evaluate the problem instances with both online and offline models via APIs and local deployments, respectively, and iii) npeval: which provides the comprehensive and ready-to-use tools to analyze the performances of LLMs over different problems, the number of tokens, the aha moments, the reasoning errors and the solution errors. Extensive experiments over widely-used LLMs demonstrate: i) NPPC can successfully decrease the performances of advanced LLMs' performances to below 10%, demonstrating that NPPC is uncrushable, ii) DeepSeek-R1, Claude-3.7-Sonnet, and o1/o3-mini are the most powerful LLMs, where DeepSeek-R1 outperforms Claude-3.7-Sonnet and o1/o3-mini in most NP-complete problems considered, and iii) the numbers of tokens, aha moments in the advanced LLMs, e.g., Claude-3.7-Sonnet and DeepSeek-R1, are observed first to increase and then decrease when the problem instances become more and more difficult. We believe that NPPC is the first ever-scaling reasoning benchmark, serving as the uncrushable and unhackable testbed for LLMs toward artificial general intelligence (AGI).

arXiv:2411.15244v2 Announce Type: replace-cross
Abstract: Large pre-trained Vision-Language Models (VLMs) such as Contrastive Language-Image Pre-training (CLIP) have been shown to be susceptible to adversarial attacks, raising concerns about their deployment in safety-critical applications like autonomous driving and medical diagnosis. One promising approach for robustifying pre-trained VLMs is Adversarial Prompt Tuning (APT), which applies adversarial training during the process of prompt tuning. However, existing APT methods are mostly single-modal methods that design prompt(s) for only the visual or textual modality, limiting their effectiveness in either robustness or clean accuracy. In this work, we propose Adversarial Prompt Distillation (APD), a bimodal knowledge distillation framework that enhances APT by integrating it with multi-modal knowledge transfer. APD optimizes prompts for both visual and textual modalities while distilling knowledge from a clean pre-trained teacher CLIP model. Extensive experiments on multiple benchmark datasets demonstrate the superiority of our APD method over the current state-of-the-art APT methods in terms of both adversarial robustness and clean accuracy. The effectiveness of APD also validates the possibility of using a non-robust teacher to improve the generalization and robustness of fine-tuned VLMs.

arXiv:2502.18682v2 Announce Type: replace-cross
Abstract: AI systems are often introduced with high expectations, yet many fail to deliver, resulting in unintended harm and missed opportunities for benefit. We frequently observe significant "AI Mismatches", where the system's actual performance falls short of what is needed to ensure safety and co-create value. These mismatches are particularly difficult to address once development is underway, highlighting the need for early-stage intervention. Navigating complex, multi-dimensional risk factors that contribute to AI Mismatches is a persistent challenge. To address it, we propose an AI Mismatch approach to anticipate and mitigate risks early on, focusing on the gap between realistic model performance and required task performance. Through an analysis of 774 AI cases, we extracted a set of critical factors, which informed the development of seven matrices that map the relationships between these factors and highlight high-risk areas. Through case studies, we demonstrate how our approach can help reduce risks in AI development.

arXiv:2504.11082v1 Announce Type: cross
Abstract: While multimodal fusion has been extensively studied in Multimodal Sentiment Analysis (MSA), the role of fusion depth and multimodal capacity allocation remains underexplored. In this work, we position fusion depth, scalability, and dedicated multimodal capacity as primary factors for effective fusion. We introduce DeepMLF, a novel multimodal language model (LM) with learnable tokens tailored toward deep fusion. DeepMLF leverages an audiovisual encoder and a pretrained decoder LM augmented with multimodal information across its layers. We append learnable tokens to the LM that: 1) capture modality interactions in a controlled fashion and 2) preserve independent information flow for each modality. These fusion tokens gather linguistic information via causal self-attention in LM Blocks and integrate with audiovisual information through cross-attention MM Blocks. Serving as dedicated multimodal capacity, this design enables progressive fusion across multiple layers, providing depth in the fusion process. Our training recipe combines modality-specific losses and language modelling loss, with the decoder LM tasked to predict ground truth polarity. Across three MSA benchmarks with varying dataset characteristics, DeepMLF achieves state-of-the-art performance. Our results confirm that deeper fusion leads to better performance, with optimal fusion depths (5-7) exceeding those of existing approaches. Additionally, our analysis on the number of fusion tokens reveals that small token sets ($\sim$20) achieve optimal performance. We examine the importance of representation learning order (fusion curriculum) through audiovisual encoder initialization experiments. Our ablation studies demonstrate the superiority of the proposed fusion design and gating while providing a holistic examination of DeepMLF's scalability to LLMs, and the impact of each training objective and embedding regularization.

arXiv:2504.10898v1 Announce Type: cross
Abstract: Query reverse engineering (QRE) aims to synthesize a SQL query to connect a given database and result instance. A recent variation of QRE is where an additional input, an opaque executable containing a ground-truth query, is provided, and the goal is to non-invasively extract this specific query through only input-output examples. This variant, called Hidden Query Extraction (HQE), has a spectrum of industrial use-cases including query recovery, database security, and vendor migration. The reverse engineering (RE) tools developed for HQE, which are based on database mutation and generation techniques, can only extract flat queries with key-based equi joins and conjunctive arithmetic filter predicates, making them limited wrt both query structure and query operators. In this paper, we present Xpose, a HQE solution that elevates the extraction scope to realistic complex queries, such as those found in the TPCH benchmark. A two-pronged approach is taken: (1) The existing RE scope is substantially extended to incorporate union connectors, algebraic filter predicates, and disjunctions for both values and predicates. (2) The predictive power of LLMs is leveraged to convert business descriptions of the opaque application into extraction guidance, representing ``forward engineering" (FE). The FE module recognizes common constructs, such as nesting of sub-queries, outer joins, and scalar functions. In essence, FE establishes the broad query contours, while RE fleshes out the fine-grained details. We have evaluated Xpose on (a) E-TPCH, a query suite comprising the complete TPCH benchmark extended with queries featuring unions, diverse join types, and sub-queries; and (b) the real-world STACK benchmark. The experimental results demonstrate that its bi-directional engineering approach accurately extracts these complex queries, representing a significant step forward with regard to HQE coverage.

arXiv:2504.11338v1 Announce Type: cross
Abstract: Serverless architectures, particularly the Function as a Service (FaaS) model, have become a cornerstone of modern cloud computing due to their ability to simplify resource management and enhance application deployment agility. However, a significant challenge remains: the cold start problem. This phenomenon occurs when an idle FaaS function is invoked, requiring a full initialization process, which increases latency and degrades user experience. Existing solutions for cold start mitigation are limited in terms of invocation pattern generalization and implementation complexity. In this study, we propose an innovative approach leveraging Transformer models to mitigate the impact of cold starts in FaaS architectures. Our solution excels in accurately modeling function initialization delays and optimizing serverless system performance. Experimental evaluation using a public dataset provided by Azure demonstrates a significant reduction in cold start times, reaching up to 79\% compared to conventional methods.

arXiv:2504.10660v1 Announce Type: cross
Abstract: This paper introduces an LLM-based Latin-to-English translation platform designed to address the challenges of translating Latin texts. We named the model LITERA, which stands for Latin Interpretation and Translations into English for Research Assistance. Through a multi-layered translation process utilizing a fine-tuned version of GPT-4o-mini and GPT-4o, LITERA offers an unprecedented level of accuracy, showcased by greatly improved BLEU scores, particularly in classical Latin, along with improved BLEURT scores. The development of LITERA involved close collaboration with Duke University's Classical Studies Department, which was instrumental in creating a small, high-quality parallel Latin-English dataset. This paper details the architecture, fine-tuning methodology, and prompting strategies used in LITERA, emphasizing its ability to produce literal translations.

arXiv:2504.11186v1 Announce Type: cross
Abstract: Recent advances in reasoning-focused large language models (LLMs) mark a shift from general LLMs toward models designed for complex decision-making, a crucial aspect in medicine. However, their performance in specialized domains like ophthalmology remains underexplored. This study comprehensively evaluated and compared the accuracy and reasoning capabilities of four newly developed reasoning-focused LLMs, namely DeepSeek-R1, OpenAI o1, o3-mini, and Gemini 2.0 Flash-Thinking. Each model was assessed using 5,888 multiple-choice ophthalmology exam questions from the MedMCQA dataset in zero-shot setting. Quantitative evaluation included accuracy, Macro-F1, and five text-generation metrics (ROUGE-L, METEOR, BERTScore, BARTScore, and AlignScore), computed against ground-truth reasonings. Average inference time was recorded for a subset of 100 randomly selected questions. Additionally, two board-certified ophthalmologists qualitatively assessed clarity, completeness, and reasoning structure of responses to differential diagnosis questions.O1 (0.902) and DeepSeek-R1 (0.888) achieved the highest accuracy, with o1 also leading in Macro-F1 (0.900). The performance of models across the text-generation metrics varied: O3-mini excelled in ROUGE-L (0.151), o1 in METEOR (0.232), DeepSeek-R1 and o3-mini tied for BERTScore (0.673), DeepSeek-R1 (-4.105) and Gemini 2.0 Flash-Thinking (-4.127) performed best in BARTScore, while o3-mini (0.181) and o1 (0.176) led AlignScore. Inference time across the models varied, with DeepSeek-R1 being slowest (40.4 seconds) and Gemini 2.0 Flash-Thinking fastest (6.7 seconds). Qualitative evaluation revealed that DeepSeek-R1 and Gemini 2.0 Flash-Thinking tended to provide detailed and comprehensive intermediate reasoning, whereas o1 and o3-mini displayed concise and summarized justifications.

arXiv:2504.08222v2 Announce Type: replace-cross
Abstract: Analyzing Fast, Frequent, and Fine-grained (F$^3$) events presents a significant challenge in video analytics and multi-modal LLMs. Current methods struggle to identify events that satisfy all the F$^3$ criteria with high accuracy due to challenges such as motion blur and subtle visual discrepancies. To advance research in video understanding, we introduce F$^3$Set, a benchmark that consists of video datasets for precise F$^3$ event detection. Datasets in F$^3$Set are characterized by their extensive scale and comprehensive detail, usually encompassing over 1,000 event types with precise timestamps and supporting multi-level granularity. Currently, F$^3$Set contains several sports datasets, and this framework may be extended to other applications as well. We evaluated popular temporal action understanding methods on F$^3$Set, revealing substantial challenges for existing techniques. Additionally, we propose a new method, F$^3$ED, for F$^3$ event detections, achieving superior performance. The dataset, model, and benchmark code are available at https://github.com/F3Set/F3Set.

« 1...140141142143144...185»
×