arXiv:2504.11335v1 Announce Type: cross
Abstract: This study investigates AI-driven modernization of legacy COBOL code into Java, addressing a critical challenge in aging software systems. Leveraging the Legacy COBOL 2024 Corpus -- 50,000 COBOL files from public and enterprise sources -- Java parses the code, AI suggests upgrades, and React visualizes gains. Achieving 93% accuracy, complexity drops 35% (from 18 to 11.7) and coupling 33% (from 8 to 5.4), surpassing manual efforts (75%) and rule-based tools (82%). The approach offers a scalable path to rejuvenate COBOL systems, vital for industries like banking and insurance.
arXiv:2504.10833v1 Announce Type: cross
Abstract: Post-hoc, unsupervised concept-based explanation methods (U-CBEMs) are a promising tool for generating semantic explanations of the decision-making processes in deep neural networks, having applications in both model improvement and understanding. It is vital that the explanation is accurate, or faithful, to the model, yet we identify several limitations of prior faithfulness metrics that inhibit an accurate evaluation; most notably, prior metrics involve only the set of concepts present, ignoring how they may be spatially distributed. We address these limitations with Surrogate Faithfulness (SF), an evaluation method that introduces a spatially-aware surrogate and two novel faithfulness metrics. Using SF, we produce Optimally Faithful (OF) explanations, where concepts are found that maximize faithfulness. Our experiments show that (1) adding spatial-awareness to prior U-CBEMs increases faithfulness in all cases; (2) OF produces significantly more faithful explanations than prior U-CBEMs (30% or higher improvement in error); (3) OF's learned concepts generalize well to out-of-domain data and are more robust to adversarial examples, where prior U-CBEMs struggle.
arXiv:2504.10637v1 Announce Type: cross
Abstract: Estimating the Kullback--Leibler (KL) divergence between language models has many applications, e.g., reinforcement learning from human feedback (RLHF), interpretability, and knowledge distillation. However, computing the exact KL divergence between two arbitrary language models is intractable. Thus, practitioners often resort to the use of sampling-based estimators. While it is easy to fashion a simple Monte Carlo (MC) estimator that provides an unbiased estimate of the KL divergence between language models, this estimator notoriously suffers from high variance, and can even result in a negative estimate of the KL divergence, a non-negative quantity. In this paper, we introduce a Rao--Blackwellized estimator that is also unbiased and provably has variance less than or equal to that of the standard Monte Carlo estimator. In an empirical study on sentiment-controlled fine-tuning, we show that our estimator provides more stable KL estimates and reduces variance substantially in practice. Additionally, we derive an analogous Rao--Blackwellized estimator of the gradient of the KL divergence, which leads to more stable training and produces models that more frequently appear on the Pareto frontier of reward vs. KL compared to the ones trained with the MC estimator of the gradient.
arXiv:2504.10786v1 Announce Type: cross
Abstract: Visual Language Models (VLMs) show remarkable performance in visual reasoning tasks, successfully tackling college-level challenges that require high-level understanding of images. However, some recent reports of VLMs struggling to reason about elemental visual concepts like orientation, position, continuity, and occlusion suggest a potential gulf between human and VLM vision. Here we use the toolkit of neuropsychology to systematically assess the capabilities of three state-of-the-art VLMs across visual domains. Using 51 tests drawn from six clinical and experimental batteries, we characterise the visual abilities of leading VLMs relative to normative performance in healthy adults. While the models excel in straightforward object recognition tasks, we find widespread deficits in low- and mid-level visual abilities that would be considered clinically significant in humans. These selective deficits, profiled through validated test batteries, suggest that an artificial system can achieve complex object recognition without developing foundational visual concepts that in humans require no explicit training.
arXiv:2501.08897v2 Announce Type: replace
Abstract: Identifying reliable synthesis pathways in materials chemistry is a complex task, particularly in polymer science, due to the intricate and often non-unique nomenclature of macromolecules. To address this challenge, we propose an agent system that integrates large language models (LLMs) and knowledge graphs. By leveraging LLMs' powerful capabilities for extracting and recognizing chemical substance names, and storing the extracted data in a structured knowledge graph, our system fully automates the retrieval of relevant literatures, extraction of reaction data, database querying, construction of retrosynthetic pathway trees, further expansion through the retrieval of additional literature and recommendation of optimal reaction pathways. By considering the complex interdependencies among chemical reactants, a novel Multi-branched Reaction Pathway Search Algorithm (MBRPS) is proposed to help identify all valid multi-branched reaction pathways, which arise when a single product decomposes into multiple reaction intermediates. In contrast, previous studies were limited to cases where a product decomposes into at most one reaction intermediate. This work represents the first attempt to develop a fully automated retrosynthesis planning agent tailored specially for macromolecules powered by LLMs. Applied to polyimide synthesis, our new approach constructs a retrosynthetic pathway tree with hundreds of pathways and recommends optimized routes, including both known and novel pathways. This demonstrates utilizing LLMs for literature consultation to accomplish specific tasks is possible and crucial for future materials research, given the vast amount of materials-related literature.
arXiv:2504.10555v1 Announce Type: cross
Abstract: Data scarcity remains a critical bottleneck impeding technological advancements across various domains, including but not limited to medicine and precision agriculture. To address this challenge, we explore the potential of Deep Generative Models (DGMs) in producing synthetic data that satisfies the Generative Learning Trilemma: fidelity, diversity, and sampling efficiency. However, recognizing that these criteria alone are insufficient for practical applications, we extend the trilemma to include utility, robustness, and privacy, factors crucial for ensuring the applicability of DGMs in real-world scenarios. Evaluating these metrics becomes particularly challenging in data-scarce environments, as DGMs traditionally rely on large datasets to perform optimally. This limitation is especially pronounced in domains like medicine and precision agriculture, where ensuring acceptable model performance under data constraints is vital. To address these challenges, we assess the Generative Learning Trilemma in data-scarcity settings using state-of-the-art evaluation metrics, comparing three prominent DGMs: Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and Diffusion Models (DMs). Furthermore, we propose a comprehensive framework to assess utility, robustness, and privacy in synthetic data generated by DGMs. Our findings demonstrate varying strengths among DGMs, with each model exhibiting unique advantages based on the application context. This study broadens the scope of the Generative Learning Trilemma, aligning it with real-world demands and providing actionable guidance for selecting DGMs tailored to specific applications.
arXiv:2504.04982v2 Announce Type: replace
Abstract: Data centers (DCs) as mission-critical infrastructures are pivotal in powering the growth of artificial intelligence (AI) and the digital economy. The evolution from Internet DC to AI DC has introduced new challenges in operating and managing data centers for improved business resilience and reduced total cost of ownership. As a result, new paradigms, beyond the traditional approaches based on best practices, must be in order for future data centers. In this research, we propose and develop a novel Physical AI (PhyAI) framework for advancing DC operations and management. Our system leverages the emerging capabilities of state-of-the-art industrial products and our in-house research and development. Specifically, it presents three core modules, namely: 1) an industry-grade in-house simulation engine to simulate DC operations in a highly accurate manner, 2) an AI engine built upon NVIDIA PhysicsNemo for the training and evaluation of physics-informed machine learning (PIML) models, and 3) a digital twin platform built upon NVIDIA Omniverse for our proposed 5-tier digital twin framework. This system presents a scalable and adaptable solution to digitalize, optimize, and automate future data center operations and management, by enabling real-time digital twins for future data centers. To illustrate its effectiveness, we present a compelling case study on building a surrogate model for predicting the thermal and airflow profiles of a large-scale DC in a real-time manner. Our results demonstrate its superior performance over traditional time-consuming Computational Fluid Dynamics/Heat Transfer (CFD/HT) simulation, with a median absolute temperature prediction error of 0.18 {\deg}C. This emerging approach would open doors to several potential research directions for advancing Physical AI in future DC operations.
arXiv:2302.05508v2 Announce Type: replace-cross
Abstract: Recent studies have demonstrated that large pretrained language models (LLMs) such as BERT and GPT-2 exhibit biases in token prediction, often inherited from the data distributions present in their training corpora. In response, a number of mathematical frameworks have been proposed to quantify, identify, and mitigate these the likelihood of biased token predictions. In this paper, we present a comprehensive survey of such techniques tailored towards widely used LLMs such as BERT, GPT-2, etc. We additionally introduce Fairpy, a modular and extensible toolkit that provides plug-and-play interfaces for integrating these mathematical tools, enabling users to evaluate both pretrained and custom language models. Fairpy supports the implementation of existing debiasing algorithms. The toolkit is open-source and publicly available at: \href{https://github.com/HrishikeshVish/Fairpy}{https://github.com/HrishikeshVish/Fairpy}
arXiv:2504.11190v1 Announce Type: new
Abstract: Recent advances in Large Language Models have demonstrated their capabilities across a variety of tasks. However, automatically extracting implicit knowledge from natural language remains a significant challenge, as machines lack active experience with the physical world. Given this scenario, semantic knowledge graphs can serve as conceptual spaces that guide the automated text generation reasoning process to achieve more efficient and explainable results. In this paper, we apply a logic-augmented generation (LAG) framework that leverages the explicit representation of a text through a semantic knowledge graph and applies it in combination with prompt heuristics to elicit implicit analogical connections. This method generates extended knowledge graph triples representing implicit meaning, enabling systems to reason on unlabeled multimodal data regardless of the domain. We validate our work through three metaphor detection and understanding tasks across four datasets, as they require deep analogical reasoning capabilities. The results show that this integrated approach surpasses current baselines, performs better than humans in understanding visual metaphors, and enables more explainable reasoning processes, though still has inherent limitations in metaphor understanding, especially for domain-specific metaphors. Furthermore, we propose a thorough error analysis, discussing issues with metaphorical annotations and current evaluation methods.
arXiv:2504.10893v1 Announce Type: new
Abstract: Large language models (LLMs) have demonstrated impressive capabilities and are receiving increasing attention to enhance their reasoning through scaling test--time compute. However, their application in open--ended, knowledge--intensive, complex reasoning scenarios is still limited. Reasoning--oriented methods struggle to generalize to open--ended scenarios due to implicit assumptions of complete world knowledge. Meanwhile, knowledge--augmented reasoning (KAR) methods fail to address two core challenges: 1) error propagation, where errors in early steps cascade through the chain, and 2) verification bottleneck, where the explore--exploit tradeoff arises in multi--branch decision processes. To overcome these limitations, we introduce ARise, a novel framework that integrates risk assessment of intermediate reasoning states with dynamic retrieval--augmented generation (RAG) within a Monte Carlo tree search paradigm. This approach enables effective construction and optimization of reasoning plans across multiple maintained hypothesis branches. Experimental results show that ARise significantly outperforms the state--of--the--art KAR methods by up to 23.10%, and the latest RAG-equipped large reasoning models by up to 25.37%.
arXiv:2504.10559v1 Announce Type: cross
Abstract: Process Reward Models (PRMs) provide step-level supervision to large language models (LLMs), but scaling up training data annotation remains challenging for both humans and LLMs. To address this limitation, we propose an active learning approach, ActPRM, which proactively selects the most uncertain samples for training, substantially reducing labeling costs. During training, we use the PRM to estimate uncertainty after the forward pass, retaining only highly uncertain data. A capable yet costly reasoning model then labels this data. Then we compute the loss with respect to the labels and update the PRM's weights. We compare ActPRM vs. vanilla fine-tuning, on a pool-based active learning setting, demonstrating that ActPRM reduces 50% annotation, but achieving the comparable or even better performance. Beyond annotation efficiency, we further advance the actively trained PRM by filtering over 1M+ math reasoning trajectories with ActPRM, retaining 60% of the data. A subsequent training on this selected dataset yields a new state-of-the-art (SOTA) PRM on ProcessBench (75.0%) and PRMBench (65.5%) compared with same sized models.
arXiv:2504.11349v1 Announce Type: cross
Abstract: The demand for high-quality medical imaging in clinical practice and assisted diagnosis has made 3D reconstruction in radiological imaging a key research focus. Artificial intelligence (AI) has emerged as a promising approach to enhancing reconstruction accuracy while reducing acquisition and processing time, thereby minimizing patient radiation exposure and discomfort and ultimately benefiting clinical diagnosis. This review explores state-of-the-art AI-based 3D reconstruction algorithms in radiological imaging, categorizing them into explicit and implicit approaches based on their underlying principles. Explicit methods include point-based, volume-based, and Gaussian representations, while implicit methods encompass implicit prior embedding and neural radiance fields. Additionally, we examine commonly used evaluation metrics and benchmark datasets. Finally, we discuss the current state of development, key challenges, and future research directions in this evolving field. Our project available on: https://github.com/Bean-Young/AI4Med.
arXiv:2504.10649v1 Announce Type: new
Abstract: On-demand ride-pooling has emerged as a popular urban transportation solution, addressing the efficiency limitations of traditional ride-hailing services by grouping multiple riding requests with spatiotemporal proximity into a single vehicle. Although numerous algorithms have been developed for the Ride-pool Assignment Problem (RAP) -- a core component of ride-pooling systems, there is a lack of open-source implementations, making it difficult to benchmark these algorithms on a common dataset and objective. In this paper, we present the implementation details of a ride-pool simulator that encompasses several key ride-pool assignment algorithms, along with associated components such as vehicle routing and rebalancing. We also open-source a highly optimized and modular C++ codebase, designed to facilitate the extension of new algorithms and features. Additionally, we introduce a family of swapping-based local-search heuristics to enhance existing ride-pool assignment algorithms, achieving a better balance between performance and computational efficiency. Extensive experiments on a large-scale, real-world dataset from Manhattan, NYC reveal that while all selected algorithms perform comparably, the newly proposed Multi-Round Linear Assignment with Cyclic Exchange (LA-MR-CE) algorithm achieves a state-of-the-art service rate with significantly reduced computational time. Furthermore, an in-depth analysis suggests that a performance barrier exists for all myopic ride-pool assignment algorithms due to the system's capacity bottleneck, and incorporating future information could be key to overcoming this limitation.
arXiv:2504.10925v1 Announce Type: cross
Abstract: Link prediction on graphs has applications spanning from recommender systems to drug discovery. Temporal link prediction (TLP) refers to predicting future links in a temporally evolving graph and adds additional complexity related to the dynamic nature of graphs. State-of-the-art TLP models incorporate memory modules alongside graph neural networks to learn both the temporal mechanisms of incoming nodes and the evolving graph topology. However, memory modules only store information about nodes seen at train time, and hence such models cannot be directly transferred to entirely new graphs at test time and deployment. In this work, we study a new transfer learning task for temporal link prediction, and develop transfer-effective methods for memory-laden models. Specifically, motivated by work showing the informativeness of structural signals for the TLP task, we augment a structural mapping module to the existing TLP model architectures, which learns a mapping from graph structural (topological) features to memory embeddings. Our work paves the way for a memory-free foundation model for TLP.
arXiv:2501.14122v2 Announce Type: replace-cross
Abstract: We present a Reinforcement Learning Platform for Adversarial Black-box untargeted and targeted attacks, RLAB, that allows users to select from various distortion filters to create adversarial examples. The platform uses a Reinforcement Learning agent to add minimum distortion to input images while still causing misclassification by the target model. The agent uses a novel dual-action method to explore the input image at each step to identify sensitive regions for adding distortions while removing noises that have less impact on the target model. This dual action leads to faster and more efficient convergence of the attack. The platform can also be used to measure the robustness of image classification models against specific distortion types. Also, retraining the model with adversarial samples significantly improved robustness when evaluated on benchmark datasets. The proposed platform outperforms state-of-the-art methods in terms of the average number of queries required to cause misclassification. This advances trustworthiness with a positive social impact.
arXiv:2504.11216v1 Announce Type: cross
Abstract: Federated Learning (FL) enables decentralized training of machine learning models on distributed data while preserving privacy. However, in real-world FL settings, client data is often non-identically distributed and imbalanced, resulting in statistical data heterogeneity which impacts the generalization capabilities of the server's model across clients, slows convergence and reduces performance. In this paper, we address this challenge by first proposing a characterization of statistical data heterogeneity by means of 6 metrics of global and client attribute imbalance, class imbalance, and spurious correlations. Next, we create and share 7 computer vision datasets for binary and multiclass image classification tasks in Federated Learning that cover a broad range of statistical data heterogeneity and hence simulate real-world situations. Finally, we propose FedDiverse, a novel client selection algorithm in FL which is designed to manage and leverage data heterogeneity across clients by promoting collaboration between clients with complementary data distributions. Experiments on the seven proposed FL datasets demonstrate FedDiverse's effectiveness in enhancing the performance and robustness of a variety of FL methods while having low communication and computational overhead.
arXiv:2504.10995v1 Announce Type: cross
Abstract: Composed Image Retrieval (CIR) retrieves target images using a multi-modal query that combines a reference image with text describing desired modifications. The primary challenge is effectively fusing this visual and textual information. Current cross-modal feature fusion approaches for CIR exhibit an inherent bias in intention interpretation. These methods tend to disproportionately emphasize either the reference image features (visual-dominant fusion) or the textual modification intent (text-dominant fusion through image-to-text conversion). Such an imbalanced representation often fails to accurately capture and reflect the actual search intent of the user in the retrieval results. To address this challenge, we propose TMCIR, a novel framework that advances composed image retrieval through two key innovations: 1) Intent-Aware Cross-Modal Alignment. We first fine-tune CLIP encoders contrastively using intent-reflecting pseudo-target images, synthesized from reference images and textual descriptions via a diffusion model. This step enhances the encoder ability of text to capture nuanced intents in textual descriptions. 2) Adaptive Token Fusion. We further fine-tune all encoders contrastively by comparing adaptive token-fusion features with the target image. This mechanism dynamically balances visual and textual representations within the contrastive learning pipeline, optimizing the composed feature for retrieval. Extensive experiments on Fashion-IQ and CIRR datasets demonstrate that TMCIR significantly outperforms state-of-the-art methods, particularly in capturing nuanced user intent.
arXiv:2504.11301v1 Announce Type: new
Abstract: Large Language Model (LLM)-based agents have demonstrated strong capabilities across a wide range of tasks, and their application in the medical domain holds particular promise due to the demand for high generalizability and reliance on interdisciplinary knowledge. However, existing medical agent systems often rely on static, manually crafted workflows that lack the flexibility to accommodate diverse diagnostic requirements and adapt to emerging clinical scenarios. Motivated by the success of automated machine learning (AutoML), this paper introduces a novel framework for the automated design of medical agent architectures. Specifically, we define a hierarchical and expressive agent search space that enables dynamic workflow adaptation through structured modifications at the node, structural, and framework levels. Our framework conceptualizes medical agents as graph-based architectures composed of diverse, functional node types and supports iterative self-improvement guided by diagnostic feedback. Experimental results on skin disease diagnosis tasks demonstrate that the proposed method effectively evolves workflow structures and significantly enhances diagnostic accuracy over time. This work represents the first fully automated framework for medical agent architecture design and offers a scalable, adaptable foundation for deploying intelligent agents in real-world clinical environments.
arXiv:2504.11419v1 Announce Type: new
Abstract: Understanding how artificial systems can develop spatial awareness and reasoning has long been a challenge in AI research. Traditional models often rely on passive observation, but embodied cognition theory suggests that deeper understanding emerges from active interaction with the environment. This study investigates whether neural networks can autonomously internalize spatial concepts through interaction, focusing on planar navigation tasks. Using Gated Recurrent Units (GRUs) combined with Meta-Reinforcement Learning (Meta-RL), we show that agents can learn to encode spatial properties like direction, distance, and obstacle avoidance. We introduce Hybrid Dynamical Systems (HDS) to model the agent-environment interaction as a closed dynamical system, revealing stable limit cycles that correspond to optimal navigation strategies. Ridge Representation allows us to map navigation paths into a fixed-dimensional behavioral space, enabling comparison with neural states. Canonical Correlation Analysis (CCA) confirms strong alignment between these representations, suggesting that the agent's neural states actively encode spatial knowledge. Intervention experiments further show that specific neural dimensions are causally linked to navigation performance. This work provides an approach to bridging the gap between action and perception in AI, offering new insights into building adaptive, interpretable models that can generalize across complex environments. The causal validation of neural representations also opens new avenues for understanding and controlling the internal mechanisms of AI systems, pushing the boundaries of how machines learn and reason in dynamic, real-world scenarios.
arXiv:2504.05408v2 Announce Type: replace-cross
Abstract: As frontier AI advances rapidly, understanding its impact on cybersecurity and inherent risks is essential to ensuring safe AI evolution (e.g., guiding risk mitigation and informing policymakers). While some studies review AI applications in cybersecurity, none of them comprehensively discuss AI's future impacts or provide concrete recommendations for navigating its safe and secure usage. This paper presents an in-depth analysis of frontier AI's impact on cybersecurity and establishes a systematic framework for risk assessment and mitigation. To this end, we first define and categorize the marginal risks of frontier AI in cybersecurity and then systemically analyze the current and future impacts of frontier AI in cybersecurity, qualitatively and quantitatively. We also discuss why frontier AI likely benefits attackers more than defenders in the short term from equivalence classes, asymmetry, and economic impact. Next, we explore frontier AI's impact on future software system development, including enabling complex hybrid systems while introducing new risks. Based on our findings, we provide security recommendations, including constructing fine-grained benchmarks for risk assessment, designing AI agents for defenses, building security mechanisms and provable defenses for hybrid systems, enhancing pre-deployment security testing and transparency, and strengthening defenses for users. Finally, we present long-term research questions essential for understanding AI's future impacts and unleashing its defensive capabilities.
arXiv:2504.11245v1 Announce Type: cross
Abstract: Influence Maximization (IM) in temporal graphs focuses on identifying influential "seeds" that are pivotal for maximizing network expansion. We advocate defining these seeds through Influence Propagation Paths (IPPs), which is essential for scaling up the network. Our focus lies in efficiently labeling IPPs and accurately predicting these seeds, while addressing the often-overlooked cold-start issue prevalent in temporal networks. Our strategy introduces a motif-based labeling method and a tensorized Temporal Graph Network (TGN) tailored for multi-relational temporal graphs, bolstering prediction accuracy and computational efficiency. Moreover, we augment cold-start nodes with new neighbors from historical data sharing similar IPPs. The recommendation system within an online team-based gaming environment presents subtle impact on the social network, forming multi-relational (i.e., weak and strong) temporal graphs for our empirical IM study. We conduct offline experiments to assess prediction accuracy and model training efficiency, complemented by online A/B testing to validate practical network growth and the effectiveness in addressing the cold-start issue.
arXiv:2504.11160v1 Announce Type: cross
Abstract: Gaze estimation, which predicts gaze direction, commonly faces the challenge of interference from complex gaze-irrelevant information in face images. In this work, we propose DMAGaze, a novel gaze estimation framework that exploits information from facial images in three aspects: gaze-relevant global features (disentangled from facial image), local eye features (extracted from cropped eye patch), and head pose estimation features, to improve overall performance. Firstly, we design a new continuous mask-based Disentangler to accurately disentangle gaze-relevant and gaze-irrelevant information in facial images by achieving the dual-branch disentanglement goal through separately reconstructing the eye and non-eye regions. Furthermore, we introduce a new cascaded attention module named Multi-Scale Global Local Attention Module (MS-GLAM). Through a customized cascaded attention structure, it effectively focuses on global and local information at multiple scales, further enhancing the information from the Disentangler. Finally, the global gaze-relevant features disentangled by the upper face branch, combined with head pose and local eye features, are passed through the detection head for high-precision gaze estimation. Our proposed DMAGaze has been extensively validated on two mainstream public datasets, achieving state-of-the-art performance.
arXiv:2408.12902v2 Announce Type: replace
Abstract: In the field of multimodal large language models (MLLMs), common methods typically involve unfreezing the language model during training to foster profound visual understanding. However, the fine-tuning of such models with vision-language data often leads to a diminution of their natural language processing (NLP) capabilities. To avoid this performance degradation, a straightforward solution is to freeze the language model while developing multimodal competencies. Unfortunately, previous works have not attained satisfactory outcomes. Building on the strategy of freezing the language model, we conduct thorough structural exploration and introduce the Inner-Adaptor Architecture (IAA). Specifically, the architecture incorporates multiple multimodal adaptors at varying depths within the large language model to facilitate direct interaction with the inherently text-oriented transformer layers, thereby enabling the frozen language model to acquire multimodal capabilities. Unlike previous approaches of freezing language models that require large-scale aligned data, our proposed architecture is able to achieve superior performance on small-scale datasets. We conduct extensive experiments to improve the general multimodal capabilities and visual grounding abilities of the MLLM. Our approach remarkably outperforms previous state-of-the-art methods across various vision-language benchmarks without sacrificing performance on NLP tasks. Code and models are available at https://github.com/360CVGroup/Inner-Adaptor-Architecture.
arXiv:2504.11344v1 Announce Type: cross
Abstract: Temporal Point Processes (TPPs) are widely used for modeling event sequences in various medical domains, such as disease onset prediction, progression analysis, and clinical decision support. Although TPPs effectively capture temporal dynamics, their lack of interpretability remains a critical challenge. Recent advancements have introduced interpretable TPPs. However, these methods fail to incorporate numerical features, thereby limiting their ability to generate precise predictions. To address this issue, we propose Hybrid-Rule Temporal Point Processes (HRTPP), a novel framework that integrates temporal logic rules with numerical features, improving both interpretability and predictive accuracy in event modeling. HRTPP comprises three key components: basic intensity for intrinsic event likelihood, rule-based intensity for structured temporal dependencies, and numerical feature intensity for dynamic probability modulation. To effectively discover valid rules, we introduce a two-phase rule mining strategy with Bayesian optimization. To evaluate our method, we establish a multi-criteria assessment framework, incorporating rule validity, model fitting, and temporal predictive accuracy. Experimental results on real-world medical datasets demonstrate that HRTPP outperforms state-of-the-art interpretable TPPs in terms of predictive performance and clinical interpretability. In case studies, the rules extracted by HRTPP explain the disease progression, offering valuable contributions to medical diagnosis.
By eliminating redundant computations, a new data-driven method can streamline processes like scheduling trains, routing delivery drivers, or assigning airline crews.
arXiv:2504.10983v1 Announce Type: cross
Abstract: The design of protein sequences with desired functionalities is a fundamental task in protein engineering. Deep generative methods, such as autoregressive models and diffusion models, have greatly accelerated the discovery of novel protein sequences. However, these methods mainly focus on local or shallow residual semantics and suffer from low inference efficiency, large modeling space and high training cost. To address these challenges, we introduce ProtFlow, a fast flow matching-based protein sequence design framework that operates on embeddings derived from semantically meaningful latent space of protein language models. By compressing and smoothing the latent space, ProtFlow enhances performance while training on limited computational resources. Leveraging reflow techniques, ProtFlow enables high-quality single-step sequence generation. Additionally, we develop a joint design pipeline for the design scene of multichain proteins. We evaluate ProtFlow across diverse protein design tasks, including general peptides and long-chain proteins, antimicrobial peptides, and antibodies. Experimental results demonstrate that ProtFlow outperforms task-specific methods in these applications, underscoring its potential and broad applicability in computational protein sequence design and analysis.
arXiv:2504.10519v1 Announce Type: new
Abstract: AI Agents powered by Large Language Models are transforming the world through enormous applications. A super agent has the potential to fulfill diverse user needs, such as summarization, coding, and research, by accurately understanding user intent and leveraging the appropriate tools to solve tasks. However, to make such an agent viable for real-world deployment and accessible at scale, significant optimizations are required to ensure high efficiency and low cost. This paper presents a design of the Super Agent System. Upon receiving a user prompt, the system first detects the intent of the user, then routes the request to specialized task agents with the necessary tools or automatically generates agentic workflows. In practice, most applications directly serve as AI assistants on edge devices such as phones and robots. As different language models vary in capability and cloud-based models often entail high computational costs, latency, and privacy concerns, we then explore the hybrid mode where the router dynamically selects between local and cloud models based on task complexity. Finally, we introduce the blueprint of an on-device super agent enhanced with cloud. With advances in multi-modality models and edge hardware, we envision that most computations can be handled locally, with cloud collaboration only as needed. Such architecture paves the way for super agents to be seamlessly integrated into everyday life in the near future.
arXiv:2504.10536v1 Announce Type: cross
Abstract: Federated learning (FL) enables collaborative model training across organizations without sharing raw data, addressing crucial privacy concerns in healthcare natural language processing (NLP). However, training large language models (LLMs) in federated settings faces significant challenges, including communication overhead and data heterogeneity. We propose Layer-Skipping Federated Learning, where only selected layers of a pre-trained LLM are fine-tuned across clients while others remain frozen. Applied to LLaMA 3.2-1B, our approach reduces communication costs by approximately 70% while maintaining performance within 2% of centralized training. We evaluate our method on clinical NER and classification tasks using i2b2 and MIMIC-III datasets. Our experiments demonstrate that Layer-Skipping FL outperforms competitive baselines, handles non-IID clinical data distributions effectively, and shows robustness when combined with differential privacy. This approach represents a practical solution for privacy-preserving collaborative learning in healthcare NLP.
arXiv:2210.04723v5 Announce Type: replace
Abstract: Reinforcement learning (RL) systems can be complex and non-interpretable, making it challenging for non-AI experts to understand or intervene in their decisions. This is due in part to the sequential nature of RL in which actions are chosen because of their likelihood of obtaining future rewards. However, RL agents discard the qualitative features of their training, making it difficult to recover user-understandable information for "why" an action is chosen. We propose a technique Experiential Explanations to generate counterfactual explanations by training influence predictors along with the RL policy. Influence predictors are models that learn how different sources of reward affect the agent in different states, thus restoring information about how the policy reflects the environment. Two human evaluation studies revealed that participants presented with Experiential Explanations were better able to correctly guess what an agent would do than those presented with other standard types of explanation. Participants also found that Experiential Explanations are more understandable, satisfying, complete, useful, and accurate. Qualitative analysis provides information on the factors of Experiential Explanations that are most useful and the desired characteristics that participants seek from the explanations.
arXiv:2504.10753v1 Announce Type: cross
Abstract: Recommending items to users has long been a fundamental task, and studies have tried to improve it ever since. Most well-known models commonly employ representation learning to map users and items into a unified embedding space for matching assessment. These approaches have primary limitations, especially when dealing with explicit feedback and sparse data contexts. Two primary limitations are their proneness to overfitting and failure to incorporate epistemic uncertainty in predictions. To address these problems, we propose a novel Bayesian Deep Ensemble Collaborative Filtering method named BDECF. To improve model generalization and quality, we utilize Bayesian Neural Networks, which incorporate uncertainty within their weight parameters. In addition, we introduce a new interpretable non-linear matching approach for the user and item embeddings, leveraging the advantages of the attention mechanism. Furthermore, we endorse the implementation of an ensemble-based supermodel to generate more robust and reliable predictions, resulting in a more complete model. Empirical evaluation through extensive experiments and ablation studies across a range of publicly accessible real-world datasets with differing sparsity characteristics confirms our proposed method's effectiveness and the importance of its components.