arXiv:1908.08652v1 Announce Type: cross
Abstract: We propose a Multi-Task Learning (MTL) paradigm based deep neural network architecture, called MTCNet (Multi-Task Crowd Network) for crowd density and count estimation. Crowd count estimation is challenging due to the non-uniform scale variations and the arbitrary perspective of an individual image. The proposed model has two related tasks, with Crowd Density Estimation as the main task and Crowd-Count Group Classification as the auxiliary task. The auxiliary task helps in capturing the relevant scale-related information to improve the performance of the main task. The main task model comprises two blocks: VGG-16 front-end for feature extraction and a dilated Convolutional Neural Network for density map generation. The auxiliary task model shares the same front-end as the main task, followed by a CNN classifier. Our proposed network achieves 5.8% and 14.9% lower Mean Absolute Error (MAE) than the state-of-the-art methods on ShanghaiTech dataset without using any data augmentation. Our model also outperforms with 10.5% lower MAE on UCF_CC_50 dataset.
arXiv:2504.11442v1 Announce Type: cross
Abstract: TextArena is an open-source collection of competitive text-based games for training and evaluation of agentic behavior in Large Language Models (LLMs). It spans 57+ unique environments (including single-player, two-player, and multi-player setups) and allows for easy evaluation of model capabilities via an online-play system (against humans and other submitted models) with real-time TrueSkill scores. Traditional benchmarks rarely assess dynamic social skills such as negotiation, theory of mind, and deception, creating a gap that TextArena addresses. Designed with research, community and extensibility in mind, TextArena emphasizes ease of adding new games, adapting the framework, testing models, playing against the models, and training models. Detailed documentation of environments, games, leaderboard, and examples are available on https://github.com/LeonGuertler/TextArena and https://www.textarena.ai/.
arXiv:2504.10845v1 Announce Type: cross
Abstract: Large Language Models (LLMs), powered by Transformers, have demonstrated human-like intelligence capabilities, yet their underlying mechanisms remain poorly understood. This paper presents a novel framework for interpreting LLMs as probabilistic left context-sensitive languages (CSLs) generators. We hypothesize that Transformers can be effectively decomposed into three fundamental components: context windows, attention mechanisms, and autoregressive generation frameworks. This decomposition allows for the development of more flexible and interpretable computational models, moving beyond the traditional view of attention and autoregression as inseparable processes. We argue that next-token predictions can be understood as probabilistic, dynamic approximations of left CSL production rules, providing an intuitive explanation for how simple token predictions can yield human-like intelligence outputs. Given that all CSLs are left context-sensitive (Penttonen, 1974), we conclude that Transformers stochastically approximate CSLs, which are widely recognized as models of human-like intelligence. This interpretation bridges the gap between Formal Language Theory and the observed generative power of Transformers, laying a foundation for future advancements in generative AI theory and applications. Our novel perspective on Transformer architectures will foster a deeper understanding of LLMs and their future potentials.
arXiv:2407.03368v5 Announce Type: replace-cross
Abstract: This study investigates the integration of forecasting and optimization in energy management systems, with a focus on the role of switching costs -- penalties incurred from frequent operational adjustments. We develop a theoretical and empirical framework to examine how forecast accuracy and stability interact with switching costs in online decision-making settings. Our analysis spans both deterministic and stochastic optimization approaches, using point and probabilistic forecasts. A novel metric for measuring temporal consistency in probabilistic forecasts is introduced, and the framework is validated in a real-world battery scheduling case based on the CityLearn 2022 challenge. Results show that switching costs significantly alter the trade-off between forecast accuracy and stability, and that more stable forecasts can reduce the performance loss due to switching. Contrary to common practice, the findings suggest that, under non-negligible switching costs, longer commitment periods may lead to better overall outcomes. These insights have practical implications for the design of intelligent, forecast-aware energy management systems.
arXiv:2502.07154v2 Announce Type: replace-cross
Abstract: Recent progress in large language models (LLMs) highlights the power of scaling test-time compute to achieve strong performance on complex tasks, such as mathematical reasoning and code generation. This raises a critical question: how should model training be modified to optimize performance under a subsequent test-time compute strategy and budget? To explore this, we focus on pass@N, a simple test-time strategy that searches for a correct answer in $N$ independent samples. We show, surprisingly, that training with cross-entropy (CE) loss can be ${\it misaligned}$ with pass@N in that pass@N accuracy ${\it decreases}$ with longer training. We explain the origins of this misalignment in terms of model overconfidence induced by CE, and experimentally verify our prediction of overconfidence as an impediment to scaling test-time compute via pass@N. Furthermore we suggest a principled, modified training loss that is better aligned to pass@N by limiting model confidence and rescuing pass@N test performance. Our algorithm demonstrates improved mathematical reasoning on MATH and MiniF2F benchmarks under several scenarios: (1) providing answers to math questions; and (2) proving theorems by searching over proof trees of varying shapes. Overall our work underscores the importance of co-designing two traditionally separate phases of LLM development: training-time protocols and test-time search and reasoning strategies.
arXiv:2504.11454v1 Announce Type: cross
Abstract: Multimodal protein language models (PLMs) integrate sequence and token-based structural information, serving as a powerful foundation for protein modeling, generation, and design. However, the reliance on tokenizing 3D structures into discrete tokens causes substantial loss of fidelity about fine-grained structural details and correlations. In this paper, we systematically elucidate the design space of multimodal PLMs to overcome their limitations. We identify tokenization loss and inaccurate structure token predictions by the PLMs as major bottlenecks. To address these, our proposed design space covers improved generative modeling, structure-aware architectures and representation learning, and data exploration. Our advancements approach finer-grained supervision, demonstrating that token-based multimodal PLMs can achieve robust structural modeling. The effective design methods dramatically improve the structure generation diversity, and notably, folding abilities of our 650M model by reducing the RMSD from 5.52 to 2.36 on PDB testset, even outperforming 3B baselines and on par with the specialized folding models.
arXiv:2504.11355v1 Announce Type: cross
Abstract: Training Neural Networks (NNs) to behave as Model Predictive Control (MPC) algorithms is an effective way to implement them in constrained embedded devices. By collecting large amounts of input-output data, where inputs represent system states and outputs are MPC-generated control actions, NNs can be trained to replicate MPC behavior at a fraction of the computational cost. However, although the composition of the training data critically influences the final NN accuracy, methods for systematically optimizing it remain underexplored. In this paper, we introduce the concept of Optimally-Sampled Datasets (OSDs) as ideal training sets and present an efficient algorithm for generating them. An OSD is a parametrized subset of all the available data that (i) preserves existing MPC information up to a certain numerical resolution, (ii) avoids duplicate or near-duplicate states, and (iii) becomes saturated or complete. We demonstrate the effectiveness of OSDs by training NNs to replicate the University of Virginia's MPC algorithm for automated insulin delivery in Type-1 Diabetes, achieving a four-fold improvement in final accuracy. Notably, two OSD-trained NNs received regulatory clearance for clinical testing as the first NN-based control algorithm for direct human insulin dosing. This methodology opens new pathways for implementing advanced optimizations on resource-constrained embedded platforms, potentially revolutionizing how complex algorithms are deployed.
arXiv:2504.05862v2 Announce Type: replace
Abstract: Large language model-based agents are becoming increasingly popular as a low-cost mechanism to provide personalized, conversational advice, and have demonstrated impressive capabilities in relatively simple scenarios, such as movie recommendations. But how do these agents perform in complex high-stakes domains, where domain expertise is essential and mistakes carry substantial risk? This paper investigates the effectiveness of LLM-advisors in the finance domain, focusing on three distinct challenges: (1) eliciting user preferences when users themselves may be unsure of their needs, (2) providing personalized guidance for diverse investment preferences, and (3) leveraging advisor personality to build relationships and foster trust. Via a lab-based user study with 64 participants, we show that LLM-advisors often match human advisor performance when eliciting preferences, although they can struggle to resolve conflicting user needs. When providing personalized advice, the LLM was able to positively influence user behavior, but demonstrated clear failure modes. Our results show that accurate preference elicitation is key, otherwise, the LLM-advisor has little impact, or can even direct the investor toward unsuitable assets. More worryingly, users appear insensitive to the quality of advice being given, or worse these can have an inverse relationship. Indeed, users reported a preference for and increased satisfaction as well as emotional trust with LLMs adopting an extroverted persona, even though those agents provided worse advice.
arXiv:2504.10768v1 Announce Type: cross
Abstract: This paper examines the thin-slicing approach - the ability to make accurate judgments based on minimal information - in the context of scientific presentations. Drawing on research from nonverbal communication and personality psychology, we show that brief excerpts (thin slices) reliably predict overall presentation quality. Using a novel corpus of over one hundred real-life science talks, we employ Large Language Models (LLMs) to evaluate transcripts of full presentations and their thin slices. By correlating LLM-based evaluations of short excerpts with full-talk assessments, we determine how much information is needed for accurate predictions. Our results demonstrate that LLM-based evaluations align closely with human ratings, proving their validity, reliability, and efficiency. Critically, even very short excerpts (less than 10 percent of a talk) strongly predict overall evaluations. This suggests that the first moments of a presentation convey relevant information that is used in quality evaluations and can shape lasting impressions. The findings are robust across different LLMs and prompting strategies. This work extends thin-slicing research to public speaking and connects theories of impression formation to LLMs and current research on AI communication. We discuss implications for communication and social cognition research on message reception. Lastly, we suggest an LLM-based thin-slicing framework as a scalable feedback tool to enhance human communication.
arXiv:2502.12012v2 Announce Type: replace-cross
Abstract: Variational quantum algorithms, such as the Recursive Quantum Approximate Optimization Algorithm (RQAOA), have become increasingly popular, offering promising avenues for employing Noisy Intermediate-Scale Quantum devices to address challenging combinatorial optimization tasks like the maximum cut problem. In this study, we utilize an evolutionary algorithm equipped with a unique fitness function. This approach targets hard maximum cut instances within the latent space of a Graph Autoencoder, identifying those that pose significant challenges or are particularly tractable for RQAOA, in contrast to the classic Goemans and Williamson algorithm. Our findings not only delineate the distinct capabilities and limitations of each algorithm but also expand our understanding of RQAOA's operational limits. Furthermore, the diverse set of graphs we have generated serves as a crucial benchmarking asset, emphasizing the need for more advanced algorithms to tackle combinatorial optimization challenges. Additionally, our results pave the way for new avenues in graph generation research, offering exciting opportunities for future explorations.
arXiv:2504.11354v1 Announce Type: new
Abstract: We introduce Kimina-Prover Preview, a large language model that pioneers a novel reasoning-driven exploration paradigm for formal theorem proving, as showcased in this preview release. Trained with a large-scale reinforcement learning pipeline from Qwen2.5-72B, Kimina-Prover demonstrates strong performance in Lean 4 proof generation by employing a structured reasoning pattern we term \textit{formal reasoning pattern}. This approach allows the model to emulate human problem-solving strategies in Lean, iteratively generating and refining proof steps. Kimina-Prover sets a new state-of-the-art on the miniF2F benchmark, reaching 80.7% with pass@8192. Beyond improved benchmark performance, our work yields several key insights: (1) Kimina-Prover exhibits high sample efficiency, delivering strong results even with minimal sampling (pass@1) and scaling effectively with computational budget, stemming from its unique reasoning pattern and RL training; (2) we demonstrate clear performance scaling with model size, a trend previously unobserved for neural theorem provers in formal mathematics; (3) the learned reasoning style, distinct from traditional search algorithms, shows potential to bridge the gap between formal verification and informal mathematical intuition. We open source distilled versions with 1.5B and 7B parameters of Kimina-Prove
arXiv:2504.10982v1 Announce Type: cross
Abstract: Large language models (LLMs) perform well in medical QA, but their effectiveness in Japanese contexts is limited due to privacy constraints that prevent the use of commercial models like GPT-4 in clinical settings. As a result, recent efforts focus on instruction-tuning open-source LLMs, though the potential of combining them with retrieval-augmented generation (RAG) remains underexplored. To bridge this gap, we are the first to explore a knowledge graph-based (KG) RAG framework for Japanese medical QA small-scale open-source LLMs. Experimental results show that KG-based RAG has only a limited impact on Japanese medical QA using small-scale open-source LLMs. Further case studies reveal that the effectiveness of the RAG is sensitive to the quality and relevance of the external retrieved content. These findings offer valuable insights into the challenges and potential of applying RAG in Japanese medical QA, while also serving as a reference for other low-resource languages.
arXiv:2504.11197v1 Announce Type: cross
Abstract: Small language models (SLMs) support efficient deployments on resource-constrained edge devices, but their limited capacity compromises inference performance. Retrieval-augmented generation (RAG) is a promising solution to enhance model performance by integrating external databases, without requiring intensive on-device model retraining. However, large-scale public databases and user-specific private contextual documents are typically located on the cloud and the device separately, while existing RAG implementations are primarily centralized. To bridge this gap, we propose DRAGON, a distributed RAG framework to enhance on-device SLMs through both general and personal knowledge without the risk of leaking document privacy. Specifically, DRAGON decomposes multi-document RAG into multiple parallel token generation processes performed independently and locally on the cloud and the device, and employs a newly designed Speculative Aggregation, a dual-side speculative algorithm to avoid frequent output synchronization between the cloud and device. A new scheduling algorithm is further introduced to identify the optimal aggregation side based on real-time network conditions. Evaluations on real-world hardware testbed demonstrate a significant performance improvement of DRAGON-up to 1.9x greater gains over standalone SLM compared to the centralized RAG, substantial reduction in per-token latency, and negligible Time to First Token (TTFT) overhead.
arXiv:2504.03784v3 Announce Type: replace-cross
Abstract: Reinforcement learning from human feedback (RLHF) has emerged as a key technique for aligning the output of large language models (LLMs) with human preferences. To learn the reward function, most existing RLHF algorithms use the Bradley-Terry model, which relies on assumptions about human preferences that may not reflect the complexity and variability of real-world judgments. In this paper, we propose a robust algorithm to enhance the performance of existing approaches under such reward model misspecifications. Theoretically, our algorithm reduces the variance of reward and policy estimators, leading to improved regret bounds. Empirical evaluations on LLM benchmark datasets demonstrate that the proposed algorithm consistently outperforms existing methods, with 77-81% of responses being favored over baselines on the Anthropic Helpful and Harmless dataset.
arXiv:2504.10498v1 Announce Type: cross
Abstract: The performance of large language models (LLMs) in Q&A task increased substantially through Retrieval-Augmented Generation (RAG) which brings in external knowledge. However, the main difficulty lies in balancing the inherent self-knowledge of LLMs with external information retrieval (IR). The current threshold-based methods apply one-dimensional static mechanisms with single criterion. As a result, their IR decisions might be irrelevant to the LLMs' response under difficult queries. To alleviate this problem, we propose Cognitive Convection of Self-Knowledge (CCSK). Different from traditional methods that maintain single fixed IR activation criteria, CCSK implements a dynamic joint decision process via a Siamese Network module and a Response Quality Model. The Siamese Network calculates the cosine similarity between the current query and the historical queries. The Response Quality Model evaluates the responses of LLMs through LightGBM. The final decision of the CCSK is derived from the outputs of the two modules, as well as text features fused using a multi-head attention mechanism. Extensive experiments on real-world datasets show that CCSK significantly enhances the model's effectiveness in information retrieval.
arXiv:2504.10817v1 Announce Type: cross
Abstract: Federated Learning (FL) has emerged as an effective solution for multi-institutional collaborations without sharing patient data, offering a range of methods tailored for diverse applications. However, real-world medical datasets are often multimodal, and computational resources are limited, posing significant challenges for existing FL approaches. Recognizing these limitations, we developed the Federated Healthcare Benchmark(FHBench), a benchmark specifically designed from datasets derived from real-world healthcare applications. FHBench encompasses critical diagnostic tasks across domains such as the nervous, cardiovascular, and respiratory systems and general pathology, providing comprehensive support for multimodal healthcare evaluations and filling a significant gap in existing benchmarks. Building on FHBench, we introduced Efficient Personalized Federated Learning with Adaptive LoRA(EPFL), a personalized FL framework that demonstrates superior efficiency and effectiveness across various healthcare modalities. Our results highlight the robustness of FHBench as a benchmarking tool and the potential of EPFL as an innovative approach to advancing healthcare-focused FL, addressing key limitations of existing methods.
arXiv:2504.11320v1 Announce Type: cross
Abstract: Large Language Models (LLMs) are indispensable in today's applications, but their inference procedure -- generating responses by processing text in segments and using a memory-heavy Key-Value (KV) cache -- demands significant computational resources, particularly under memory constraints. This paper formulates LLM inference optimization as a multi-stage online scheduling problem where sequential prompt arrivals and KV cache growth render conventional scheduling ineffective. We develop a fluid dynamics approximation to provide a tractable benchmark that guides algorithm design. Building on this, we propose the Waiting for Accumulated Inference Threshold (WAIT) algorithm, which uses multiple thresholds to schedule incoming prompts optimally when output lengths are known, and extend it to Nested WAIT for cases with unknown output lengths. Theoretical analysis shows that both algorithms achieve near-optimal performance against the fluid benchmark in heavy traffic conditions, balancing throughput, latency, and Time to First Token (TTFT). Experiments with the Llama-7B model on an A100 GPU using both synthetic and real-world datasets demonstrate improved throughput and reduced latency relative to established baselines like vLLM and Sarathi. This work bridges operations research and machine learning, offering a rigorous framework for the efficient deployment of LLMs under memory constraints.
arXiv:2504.10961v1 Announce Type: cross
Abstract: As generative AI transforms educational feedback practices, understanding students' perceptions of different feedback providers becomes crucial for effective implementation. This study addresses a critical gap by comparing undergraduate students' trust in AI-generated, human-created, and human-AI co-produced feedback, informing how institutions can adapt feedback practices in this new era. Through a within-subject experiment with 91 participants, we investigated factors predicting students' ability to distinguish between feedback types, perception of feedback quality, and potential biases to AI involvement. Findings revealed that students generally preferred AI and co-produced feedback over human feedback in terms of perceived usefulness and objectivity. Only AI feedback suffered a decline in perceived genuineness when feedback sources were revealed, while co-produced feedback maintained its positive perception. Educational AI experience improved students' ability to identify AI feedback and increased their trust in all feedback types, while general AI experience decreased perceived usefulness and credibility. Male students consistently rated all feedback types as less valuable than their female and non-binary counterparts. These insights inform evidence-based guidelines for integrating AI into higher education feedback systems while addressing trust concerns and fostering AI literacy among students.
arXiv:2306.09746v2 Announce Type: replace-cross
Abstract: Temporal-difference (TD) learning is widely regarded as one of the most popular algorithms in reinforcement learning (RL). Despite its widespread use, it has only been recently that researchers have begun to actively study its finite time behavior, including the finite time bound on mean squared error and sample complexity. On the empirical side, experience replay has been a key ingredient in the success of deep RL algorithms, but its theoretical effects on RL have yet to be fully understood. In this paper, we present a simple decomposition of the Markovian noise terms and provide finite-time error bounds for TD-learning with experience replay. Specifically, under the Markovian observation model, we demonstrate that for both the averaged iterate and final iterate cases, the error term induced by a constant step-size can be effectively controlled by the size of the replay buffer and the mini-batch sampled from the experience replay buffer.
arXiv:2406.17807v5 Announce Type: replace-cross
Abstract: Recent advancements in large language models (LLMs) have unlocked the potential for generating high-quality game commentary. However, producing insightful and engaging commentary for complex games with incomplete information remains a significant challenge. In this paper, we introduce a novel commentary method that combine Reinforcement Learning (RL) and LLMs, tailored specifically for the Chinese card game \textit{Guandan}. Our system leverages RL to generate intricate card-playing scenarios and employs LLMs to generate corresponding commentary text, effectively emulating the strategic analysis and narrative prowess of professional commentators. The framework comprises a state commentary guide, a Theory of Mind (ToM)-based strategy analyzer, and a style retrieval module, which seamlessly collaborate to deliver detailed and context-relevant game commentary in the Chinese language environment. We empower LLMs with ToM capabilities and refine both retrieval and information filtering mechanisms. This facilitates the generation of personalized commentary content. Our experimental results showcase the substantial enhancement in performance achieved by the proposed commentary framework when applied to open-source LLMs, surpassing the performance of GPT-4 across multiple evaluation metrics.
arXiv:2412.09353v2 Announce Type: replace-cross
Abstract: Recent work has empirically shown that Vision-Language Models (VLMs) struggle to fully understand the compositional properties of the human language, usually modeling an image caption as a "bag of words". As a result, they perform poorly on compositional tasks, which require a deeper understanding of the different entities of a sentence (subject, verb, etc.) jointly with their mutual relationships in order to be solved. In this paper, we model the dependency relations among textual and visual tokens using a Causal Graphical Model (CGM), built using a dependency parser, and we train a decoder conditioned by the VLM visual encoder. Differently from standard autoregressive or parallel predictions, our decoder's generative process is partially-ordered following the CGM structure. This structure encourages the decoder to learn only the main causal dependencies in a sentence discarding spurious correlations. Using extensive experiments on five compositional benchmarks, we show that our method significantly outperforms all the state-of-the-art compositional approaches by a large margin, and it also improves over methods trained using much larger datasets.
arXiv:2412.21051v2 Announce Type: replace-cross
Abstract: The rapid evolution of cloud computing technologies and the increasing number of cloud applications have provided a large number of benefits in daily lives. However, the diversity and complexity of different components pose a significant challenge to cloud security, especially when dealing with sophisticated and advanced cyberattacks. Recent advancements in generative foundation models (GFMs), particularly in the large language models (LLMs), offer promising solutions for security intelligence. By exploiting the powerful abilities in language understanding, data analysis, task inference, action planning, and code generation, we present LLM-PD, a novel proactive defense architecture that defeats various threats in a proactive manner. LLM-PD can efficiently make a decision through comprehensive data analysis and sequential reasoning, as well as dynamically creating and deploying actionable defense mechanisms on the target cloud. Furthermore, it can flexibly self-evolve based on experience learned from previous interactions and adapt to new attack scenarios without additional training. The experimental results demonstrate its remarkable ability in terms of defense effectiveness and efficiency, particularly highlighting an outstanding success rate when compared with other existing methods.
arXiv:2504.10677v1 Announce Type: cross
Abstract: In this paper, we present a multi-agent reinforcement learning (MARL) framework for optimizing tissue repair processes using engineered biological agents. Our approach integrates: (1) stochastic reaction-diffusion systems modeling molecular signaling, (2) neural-like electrochemical communication with Hebbian plasticity, and (3) a biologically informed reward function combining chemical gradient tracking, neural synchronization, and robust penalties. A curriculum learning scheme guides the agent through progressively complex repair scenarios. In silico experiments demonstrate emergent repair strategies, including dynamic secretion control and spatial coordination.
arXiv:2504.11386v1 Announce Type: cross
Abstract: Temporal Graph Networks (TGNs) have demonstrated significant success in dynamic graph tasks such as link prediction and node classification. Both tasks comprise transductive settings, where the model predicts links among known nodes, and in inductive settings, where it generalises learned patterns to previously unseen nodes. Existing TGN designs face a dilemma under these dual scenarios. Anonymous TGNs, which rely solely on temporal and structural information, offer strong inductive generalisation but struggle to distinguish known nodes. In contrast, non-anonymous TGNs leverage node features to excel in transductive tasks yet fail to adapt to new nodes. To address this challenge, we propose Trajectory Encoding TGN (TETGN). Our approach introduces automatically expandable node identifiers (IDs) as learnable temporal positional features and performs message passing over these IDs to capture each node's historical context. By integrating this trajectory-aware module with a standard TGN using multi-head attention, TETGN effectively balances transductive accuracy with inductive generalisation. Experimental results on three real-world datasets show that TETGN significantly outperforms strong baselines on both link prediction and node classification tasks, demonstrating its ability to unify the advantages of anonymous and non-anonymous models for dynamic graph learning.
arXiv:2309.06774v2 Announce Type: replace-cross
Abstract: Although deep learning (DL) has led to several breakthroughs in many disciplines, the fundamental understanding on why and how DL is empirically successful remains elusive. To attack this fundamental problem and unravel the mysteries behind DL's empirical successes, significant innovations toward a unified theory of DL have been made. Although these innovations encompass nearly fundamental advances in optimization, generalization, and approximation, no work has quantified the testing performance of a DL-based algorithm employed to solve a pattern classification problem. To overcome this fundamental challenge in part, this paper exposes the fundamental testing performance limits of DL-based binary classifiers trained with hinge loss. For binary classifiers that are based on deep rectified linear unit (ReLU) feedforward neural networks (FNNs) and deep FNNs with ReLU and Tanh activation, we derive their respective novel asymptotic testing performance limits, which are validated by extensive computer experiments.
arXiv:2504.10917v1 Announce Type: cross
Abstract: Recent advancements in large-scale pre-training have shown the potential to learn generalizable representations for downstream tasks. In the graph domain, however, capturing and transferring structural information across different graph domains remains challenging, primarily due to the inherent differences in topological patterns across various contexts. Additionally, most existing models struggle to capture the complexity of rich graph structures, leading to inadequate exploration of the embedding space. To address these challenges, we propose GFSE, a universal graph structural encoder designed to capture transferable structural patterns across diverse domains such as molecular graphs, social networks, and citation networks. GFSE is the first cross-domain graph structural encoder pre-trained with multiple self-supervised learning objectives. Built on a Graph Transformer, GFSE incorporates attention mechanisms informed by graph inductive bias, enabling it to encode intricate multi-level and fine-grained topological features. The pre-trained GFSE produces generic and theoretically expressive positional and structural encoding for graphs, which can be seamlessly integrated with various downstream graph feature encoders, including graph neural networks for vectorized features and Large Language Models for text-attributed graphs. Comprehensive experiments on synthetic and real-world datasets demonstrate GFSE's capability to significantly enhance the model's performance while requiring substantially less task-specific fine-tuning. Notably, GFSE achieves state-of-the-art performance in 81.6% evaluated cases, spanning diverse graph models and datasets, highlighting its potential as a powerful and versatile encoder for graph-structured data.
arXiv:2504.10514v1 Announce Type: cross
Abstract: Color plays an important role in human perception and usually provides critical clues in visual reasoning. However, it is unclear whether and how vision-language models (VLMs) can perceive, understand, and leverage color as humans. This paper introduces ColorBench, an innovative benchmark meticulously crafted to assess the capabilities of VLMs in color understanding, including color perception, reasoning, and robustness. By curating a suite of diverse test scenarios, with grounding in real applications, ColorBench evaluates how these models perceive colors, infer meanings from color-based cues, and maintain consistent performance under varying color transformations. Through an extensive evaluation of 32 VLMs with varying language models and vision encoders, our paper reveals some undiscovered findings: (i) The scaling law (larger models are better) still holds on ColorBench, while the language model plays a more important role than the vision encoder. (ii) However, the performance gaps across models are relatively small, indicating that color understanding has been largely neglected by existing VLMs. (iii) CoT reasoning improves color understanding accuracies and robustness, though they are vision-centric tasks. (iv) Color clues are indeed leveraged by VLMs on ColorBench but they can also mislead models in some tasks. These findings highlight the critical limitations of current VLMs and underscore the need to enhance color comprehension. Our ColorBenchcan serve as a foundational tool for advancing the study of human-level color understanding of multimodal AI.
arXiv:2504.10527v1 Announce Type: new
Abstract: Artificial Intelligence (AI) has become essential for analyzing complex data and solving highly-challenging tasks. It is being applied across numerous disciplines beyond computer science, including Food Engineering, where there is a growing demand for accurate and trustworthy predictions to meet stringent food quality standards. However, this requires increasingly complex AI models, raising reliability concerns. In response, eXplainable AI (XAI) has emerged to provide insights into AI decision-making, aiding model interpretation by developers and users. Nevertheless, XAI remains underutilized in Food Engineering, limiting model reliability. For instance, in food quality control, AI models using spectral imaging can detect contaminants or assess freshness levels, but their opaque decision-making process hinders adoption. XAI techniques such as SHAP (Shapley Additive Explanations) and Grad-CAM (Gradient-weighted Class Activation Mapping) can pinpoint which spectral wavelengths or image regions contribute most to a prediction, enhancing transparency and aiding quality control inspectors in verifying AI-generated assessments. This survey presents a taxonomy for classifying food quality research using XAI techniques, organized by data types and explanation methods, to guide researchers in choosing suitable approaches. We also highlight trends, challenges, and opportunities to encourage the adoption of XAI in Food Engineering.
arXiv:2411.19000v3 Announce Type: replace-cross
Abstract: At-home rehabilitation for post-stroke patients presents significant challenges, as continuous, personalized care is often limited outside clinical settings. Additionally, the absence of comprehensive solutions addressing diverse monitoring and assistance needs in home environments complicates recovery efforts. Here, we present a multimodal smart home platform designed for continuous, at-home rehabilitation of post-stroke patients, integrating wearable sensing, ambient monitoring, and adaptive automation. A plantar pressure insole equipped with a machine learning pipeline classifies users into motor recovery stages with up to 94% accuracy, enabling quantitative tracking of walking patterns. A head-mounted eye-tracking module supports cognitive assessments and hands-free control of household devices, while ambient sensors ensure sub-second response times for interaction. These data streams are fused locally via a hierarchical Internet of Things (IoT) architecture, protecting privacy and minimizing latency. An embedded large language model (LLM) agent, Auto-Care, continuously interprets multimodal data to provide real-time interventions-issuing personalized reminders, adjusting environmental conditions, and notifying caregivers. Implemented in a post-stroke context, this integrated smart home platform increases overall user satisfaction by an average of 115% (p
arXiv:2409.10570v2 Announce Type: replace-cross
Abstract: With the advancement of intelligent healthcare, medical pre-trained language models (Med-PLMs) have emerged and demonstrated significant effectiveness in downstream medical tasks. While these models are valuable assets, they are vulnerable to misuse and theft, requiring copyright protection. However, existing watermarking methods for pre-trained language models (PLMs) cannot be directly applied to Med-PLMs due to domain-task mismatch and inefficient watermark embedding. To fill this gap, we propose the first training-free backdoor model watermarking for Med-PLMs. Our method employs low-frequency words as triggers, embedding the watermark by replacing their embeddings in the model's word embedding layer with those of specific medical terms. The watermarked Med-PLMs produce the same output for triggers as for the corresponding specified medical terms. We leverage this unique mapping to design tailored watermark extraction schemes for different downstream tasks, thereby addressing the challenge of domain-task mismatch in previous methods. Experiments demonstrate superior effectiveness of our watermarking method across medical downstream tasks. Moreover, the method exhibits robustness against model extraction, pruning, fusion-based backdoor removal attacks, while maintaining high efficiency with 10-second watermark embedding.